Advertisement
Review article|Articles in Press

Chaperone therapy for lysosomal and non-lysosomal protein misfolding diseases

      Abstract

      Chaperone therapy was introduced first as a new molecular therapeutic approach to lysosomal diseases. In a recent article, I reviewed the development of chaperone therapy mainly for lysosomal diseases. Then, more data have been collected particularly on non-lysosomal protein misfolding diseases. In this short review, I propose the concept of chaperone therapy to be classified into two different therapeutic approaches, for pH-dependent lysosomal, and pH-independent non-lysosomal protein misfolding diseases. The concept of lysosomal chaperone therapy is well established, but the non-lysosomal chaperone therapy is heterogeneous and to be investigated further for various individual diseases. As a whole, these two-types of new molecular therapeutic approaches will make an impact on the treatment of a wide range of pathological conditions caused by protein misfolding, not necessarily lysosomal but also many non-lysosomal diseases caused by gene mutations, metabolic diseases, malignancy, infectious diseases, and aging. The concept will open a completely new aspect of protein therapy in future.

      Keywords

      Abbreviations:

      CMA (chaperone-mediated autophagy), DGJ (1-deoxygalactonojirimycin), ER (endoplasmic reticulum), ERT (enzyme replacement therapy), α-Gal A (α-galactosidase A), β-Gal (β-galactosidase), β-Glu (β-glucosidase), Hsf1 (heat shock factor 1), Hsp (heat shock protein), 6S-NBI-DGJ (5N,6S-(N-butyliminomethylidene)-6-thio-1-deoxygalactonojirimycin), NOEV (N-octyl-4-epi-β-valienamine), NOV (N-octyl-β-valienamine), polyQ (polyglutamine), PQC (protein quality-control)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Suzuki Y.
        Chaperone therapy for molecular pathology in lysosomal diseases.
        Brain Dev. 2021; 43: 45-54
        • Hers H.G.
        Inborn lysosomal diseases.
        Gastroenterology. 1965; 48: 625-633
        • Brady R.O.
        Enzyme replacement therapy: conception, chaos and culmination.
        Philos Trans R Soc Lond B Biol Sci. 2003; 358: 915-919
        • Suzuki Y.
        β-Galactosidase deficiency: an approach to chaperone therapy.
        J Inherit Metab Dis. 2006; 29: 471-476
        • Suzuki Y.
        • Ogawa S.
        • Sakakibara Y.
        Chaperone therapy for neuronopathic lysosomal diseases: competitive inhibitors as chemical chaperones for enhancement of mutant enzyme activities.
        Perspect Med Chem. 2009; 3: 7-19
        • Fan J.Q.
        • Ishii S.
        • Asano N.
        • Suzuki Y.
        Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor.
        Nat Med. 1999; 5: 112-115
        • Porto C.
        • Ferrara M.C.
        • Meli M.
        • Acampora E.
        • Avolio V.
        • Rosa M.
        • et al.
        Pharmacological enhancement of α -glucosidase by the allosteric chaperone N-acetylcysteine.
        Mol Ther. 2012; 20: 2201-2211
        • Kim Y.E.
        • Hipp M.S.
        • Bracher A.
        • Hayer-Hartl M.
        • Hartl F.U.
        Molecular chaperone functions in protein folding and proteostasis.
        Annu Rev Biochem. 2013; 82: 323-355
        • Balch W.E.
        • Morimoto R.I.
        • Dillin A.
        • Kelly J.W.
        Adapting proteostasis for disease intervention.
        Science. 2008; 319: 916-919
        • Mu T.W.
        • Ong D.S.
        • Wang Y.J.
        • Balch W.E.
        • Yates 3rd, J.R.
        • Segatori L.
        • et al.
        Chemical and biological approaches synergize to ameliorate protein-folding diseases.
        Cell. 2008; 134: 769-781
        • de Silva A.M.
        • Balch W.E.
        • Helenius A.
        Quality control in the endoplasmic reticulum: folding and misfolding of vesicular stomatitis virus G protein in cells and in vitro.
        J Cell Biol. 1990; 111: 857-866
        • Gregersen N.
        • Bross P.
        • Vang S.
        • Christensen J.H.
        Protein misfolding and human disease.
        Annu Rev Genomics Hum Genet. 2006; 7: 103-124
        • Yadav K.
        • Yadav A.
        • Vashistha P.
        • Pandey V.P.
        • Dwivedi U.N.
        Protein misfolding diseases and therapeutic approaches.
        Curr Protein Pept Sci. 2019; 20: 1226-1245
        • Ko Y.M.
        • Yamanaka T.
        • Umeda M.
        • Suzuki Y.
        Effects of thiol protease inhibitors on intracellular degradation of exogenous β-galactosidase in cultured human skin fibroblasts.
        Exp Cell Res. 1983; 148: 525-529
        • Ishii S.
        • Kase R.
        • Sakuraba H.
        • Suzuki Y.
        Characterization of a mutant α-galactosidase gene product for the late-onset cardiac form of Fabry disease.
        Biochem Biophys Res Commun. 1993; 197: 1585-1589
        • Okumiya T.
        • Ishii S.
        • Takenaka T.
        • Kase R.
        • Kamei S.
        • Sakuraba H.
        • et al.
        Galactose stabilizes various missense mutants of α-galactosidase in Fabry disease.
        Biochem Biophys Res Commun. 1995; 214: 1219-1224
        • Suzuki Y.
        Chemical chaperone therapy for GM1-gangliosidosis.
        Cell Mol Life Sci. 2008; 65: 351-353
        • Sly W.S.
        • Fischer H.D.
        The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzymes.
        J Cell Biochem. 1982; 18: 67-85
        • Jo H.
        • Yugi K.
        • Ogawa S.
        • Suzuki Y.
        • Sakakibara Y.
        Molecular basis of chemical chaperone effects of N-octyl-β-valienamine on human β-glucosidase in low/neutral pH conditions.
        J Proteomics Bioinformat. 2010; 3: 104-112
        • Ohto U.
        • Usui K.
        • Ochi T.
        • Yuki K.
        • Satow Y.
        • Shimizu T.
        Crystal structure of human β-galactosidase: structural basis of GM1-gangliosidosis and morquio B diseases.
        J Biol Chem. 2012; 287: 1801-1812
        • Higaki K.
        • Ninomiya H.
        • Suzuki Y.
        • Nanba E.
        Candidate molecules for chemical chaperone therapy of GM1-gangliosidosis.
        Future Med Chem. 2013; 5: 1551-1558
        • Takai T.
        • Higaki K.
        • Aguilar-Moncayo M.
        • Mena-Barragan T.
        • Hirano Y.
        • Yura K.
        • et al.
        A bicyclic 1-deoxygalactonojirimycin derivative as a novel pharmacological chaperone for GM1-gangliosidosis.
        Mol Ther. 2013; 21: 526-532
        • Matsuda J.
        • Suzuki O.
        • Oshima A.
        • Yamamoto Y.
        • Noguchi A.
        • Takimoto K.
        • et al.
        Chemical chaperone therapy for brain pathology in GM1-gangliosidosis.
        Proc Natl Acad Sci USA. 2003; 100: 15912-15917
        • Suzuki Y.
        • Ichinomiya S.
        • Kurosawa M.
        • Matsuda J.
        • Ogawa S.
        • Iida M.
        • et al.
        Therapeutic chaperone effect of N-octyl-4-epi-β-valienamine on murine GM1-gangliosidosis.
        Mol Genet Metab. 2012; 106: 92-98
        • Narita A.
        • Shirai K.
        • Itamura S.
        • Matsuda A.
        • Ishihara A.
        • Matsushita K.
        • et al.
        Ambroxol chaperone therapy for neuronopathic Gaucher disease: A pilot study.
        Ann Clin Transl Neurol. 2016; 3: 200-215
        • Lin H.
        • Sugimoto Y.
        • Ohsaki Y.
        • Ninomiya H.
        • Oka A.
        • Taniguchi M.
        • et al.
        N-octyl-β-valienamine up-regulates activity of F213I mutant β-glucosidase in cultured cells: a potential chemical chaperone therapy for Gaucher disease.
        Biochim Biophys Acta. 2004; 1689: 219-228
        • Maegawa G.H.
        • Tropak M.B.
        • Buttner J.D.
        • Rigat B.A.
        • Fuller M.
        • Pandit D.
        • et al.
        Identification and characterization of ambroxol as an enzyme enhancement agent for Gaucher disease.
        J Biol Chem. 2009; 284: 23502-23516
        • Porto C.
        • Cardone M.
        • Fontana F.
        • Rossi B.
        • Tuzzi M.R.
        • Tarallo A.
        • et al.
        The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts.
        Mol Ther. 2009; 17: 964-971
        • Santos-Sierra S.
        • Kirchmair J.
        • Perna A.M.
        • Reiss D.
        • Kemter K.
        • Roschinger W.
        • et al.
        Novel pharmacological chaperones that correct phenylketonuria in mice.
        Hum Mol Genet. 2012; 21: 1877-1887
        • Pey A.L.
        • Ying M.
        • Cremades N.
        • Velazquez-Campoy A.
        • Scherer T.
        • Thony B.
        • et al.
        Identification of pharmacological chaperones as potential therapeutic agents to treat phenylketonuria.
        J Clin Invest. 2008; 118: 2858-2867
        • Bonapace G.
        • Waheed A.
        • Shah G.N.
        • Sly W.S.
        Chemical chaperones protect from effects of apoptosis-inducing mutation in carbonic anhydrase IV identified in retinitis pigmentosa 17.
        Proc Natl Acad Sci U S A. 2004; 101: 12300-12305
        • Yang D.S.
        • Yip C.M.
        • Huang T.H.
        • Chakrabartty A.
        • Fraser P.E.
        Manipulating the amyloid-β aggregation pathway with chemical chaperones.
        J Biol Chem. 1999; 274: 32970-32974
        • Zhang C.
        • Cuervo A.M.
        Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function.
        Nat Med. 2008; 14: 959-965
        • Takeuchi T.
        • Nagai Y.
        Protein misfolding and aggregation as a therapeutic target for polyglutamine diseases.
        Brain Sci. 2017; 7: 128
        • Sittler A.
        • Lurz R.
        • Lueder G.
        • Priller J.
        • Lehrach H.
        • Hayer-Hartl M.K.
        • et al.
        Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease.
        Hum Mol Genet. 2001; 10: 1307-1315