Advertisement

A novel variant in NEUROD2 in a patient with Rett-like phenotype points to Glu130 codon as a mutational hotspot

Published:November 26, 2022DOI:https://doi.org/10.1016/j.braindev.2022.11.004

      Abstract

      Background

      NEUROD2, encoding the neurogenic differentiation factor 2, is essential for neurodevelopment. To date, heterozygous missense variants in this gene have been identified in eight patients (from six unrelated families) with epileptic encephalopathy and developmental delay.

      Case report

      We describe a child with initial clinical suspicion of Rett/Rett-like syndrome, in whom exome sequencing detected a novel de novo variant (c.388G > A, p.Glu130Lys) in NEUROD2. Interestingly, a missense change affecting the same codon, c.388G > C (p.Glu130Gln), was previously identified in other two patients.

      Conclusions

      Our results suggest that Glu130 might represent a potential mutational hotspot of NEUROD2. Furthermore, the clinical findings (especially the absence of clinically overt seizures) strengthen the NEUROD2-phenotypic spectrum, implying that developmental delay may also manifest isolatedly. We suggest inclusion of NEUROD2-associated developmental and epileptic encephalopathies (DEEs) in the differential diagnosis of atypical Rett syndrome as well as gene panels related to autism spectrum disorder.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hamdan F.F.
        • Myers C.T.
        • Cossette P.
        • Lemay P.
        • Spiegelman D.
        • Laporte A.D.
        • et al.
        High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies.
        Am J Hum Genet. 2017; 101: 664-685
        • Papuc S.M.
        • Abela L.
        • Steindl K.
        • Begemann A.
        • Simmons T.L.
        • Schmitt B.
        • et al.
        The role of recessive inheritance in early-onset epileptic encephalopathies: a combined whole-exome sequencing and copy number study.
        Eur J Hum Genet. 2019; 27: 408-421
        • Takata A.
        • Nakashima M.
        • Saitsu H.
        • Mizuguchi T.
        • Mitsuhashi S.
        • Takahashi Y.
        • et al.
        Comprehensive analysis of coding variants highlights genetic complexity in developmental and epileptic encephalopathy.
        Nat Commun. 2019; 10
        • Sega A.G.
        • Mis E.K.
        • Lindstrom K.
        • Mercimek-Andrews S.
        • Ji W.
        • Cho M.T.
        • et al.
        De novo pathogenic variants in neuronal differentiation factor 2 (NEUROD2) cause a form of early infantile epileptic encephalopathy.
        J Med Genet. 2019; 56: 113-122
        • Mis E.K.
        • Sega A.G.
        • Signer R.H.
        • Cartwright T.
        • Ji W.
        • Martinez-Agosto J.A.
        • et al.
        Expansion of NEUROD2 phenotypes to include developmental delay without seizures.
        Am J Med Genet A. 2021; 185: 1076-1080
        • Runge K.
        • Mathieu R.
        • Bugeon S.
        • Lafi S.
        • Beurrier C.
        • Sahu S.
        • et al.
        Disruption of NEUROD2 causes a neurodevelopmental syndrome with autistic features via cell-autonomous defects in forebrain glutamatergic neurons.
        Mol Psychiatry. 2021; 26: 6125-6148
        • Demarest S.
        • Calhoun J.
        • Eschbach K.
        • Yu H.-C.
        • Mirsky D.
        • Angione K.
        • et al.
        Whole-exome sequencing and adrenocorticotropic hormone therapy in individuals with infantile spasms.
        Dev Med Child Neurol. 2022; 64: 633-640
        • Tutukova S.
        • Tarabykin V.
        • Hernandez-Miranda L.R.
        The Role of Neurod Genes in Brain Development, Function, and Disease.
        Front Mol Neurosci. 2021; 14662774
        • de Martin X.
        • Sodaei R.
        • Santpere G.
        Mechanisms of Binding Specificity among bHLH Transcription Factors.
        Int J Mol Sci. 2021; 22: 9150
        • Longo A.
        • Guanga G.P.
        • Rose R.B.
        Crystal structure of E47-NeuroD1/beta2 bHLH domain-DNA complex: heterodimer selectivity and DNA recognition.
        Biochemistry. 2008; 47: 218-229
        • Brzózka M.M.
        • Radyushkin K.
        • Wichert S.P.
        • Ehrenreich H.
        • Rossner M.J.
        Cognitive and sensorimotor gating impairments in transgenic mice overexpressing the schizophrenia susceptibility gene Tcf4 in the brain.
        Biol Psychiatry. 2010; 68: 33-40
        • Sepp M.
        • Pruunsild P.
        • Timmusk T.
        Pitt-Hopkins syndrome-associated mutations in TCF4 lead to variable impairment of the transcription factor function ranging from hypomorphic to dominant-negative effects.
        Hum Mol Genet. 2012; 21: 2873-2888
        • Sirp A.
        • Roots K.
        • Nurm K.
        • Tuvikene J.
        • Sepp M.
        • Timmusk T.
        Functional consequences of TCF4 missense substitutions associated with Pitt-Hopkins syndrome, mild intellectual disability, and schizophrenia.
        J Biol Chem. 2021; 297: 101381
        • Zollino M.
        • Zweier C.
        • Van Balkom I.D.
        • Sweetser D.A.
        • Alaimo J.
        • Bijlsma E.K.
        • et al.
        Diagnosis and management in Pitt-Hopkins syndrome: First international consensus statement.
        Clin Genet. 2019; 95: 462-478
        • Zhao T.
        • Genchev G.Z.
        • Wu S.
        • Yu G.
        • Lu H.
        • Feng J.
        Pitt-Hopkins syndrome: phenotypic and genotypic description of four unrelated patients and structural analysis of corresponding missense mutations.
        Neurogenetics. 2021; 22: 161-169
        • Goodspeed K.
        • Newsom C.
        • Morris M.A.
        • Powell C.
        • Evans P.
        • Golla S.
        Pitt-Hopkins Syndrome: A Review of Current Literature, Clinical Approach, and 23-Patient Case Series.
        J Child Neurol. 2018; 33: 233-244
        • Srivastava S.
        • Desai S.
        • Cohen J.
        • Smith-Hicks C.
        • Barañano K.
        • Fatemi A.
        • et al.
        Monogenic disorders that mimic the phenotype of Rett syndrome.
        Neurogenetics. 2018; 19: 41-47
        • Vidal S.
        • Brandi N.
        • Pacheco P.
        • Maynou J.
        • Fernandez G.
        • Xiol C.
        • et al.
        The most recurrent monogenic disorders that overlap with the phenotype of Rett syndrome.
        Eur J Paediatr Neurol. 2019; 23: 609-620
        • Van Balkom I.D.
        • Vuijk P.J.
        • Franssens M.
        • Hoek H.W.
        • Hennekam R.C.
        Development, cognition, and behaviour in Pitt-Hopkins syndrome.
        Dev Med Child Neurol. 2012; 54: 925-931
        • Stallworth J.L.
        • Dy M.E.
        • Buchanan C.B.
        • Chen C.-F.
        • Scott A.E.
        • Glaze D.G.
        • et al.
        Hand stereotypies: Lessons from the Rett Syndrome Natural History Study.
        Neurology. 2019; 92: e2594-e2603