Advertisement

Prediction and assessment of acute encephalopathy syndromes immediately after febrile status epilepticus

  • Kenji Uematsu
    Affiliations
    Department of Pediatrics, National Defense Medical College Hospital, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
    Search for articles by this author
  • Author Footnotes
    1 ORCID iD: 0000-0002-0166-3469.
    Hiroshi Matsumoto
    Correspondence
    Corresponding author.
    Footnotes
    1 ORCID iD: 0000-0002-0166-3469.
    Affiliations
    Department of Pediatrics, National Defense Medical College Hospital, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
    Search for articles by this author
  • Kiyotaka Zaha
    Affiliations
    Department of Pediatrics, National Defense Medical College Hospital, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
    Search for articles by this author
  • Author Footnotes
    2 ORCID iD: 0000-0002-3172-6221.
    Masashi Mizuguchi
    Footnotes
    2 ORCID iD: 0000-0002-3172-6221.
    Affiliations
    Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, 1-1-10 Komone, Itabashi-ku, Tokyo, Japan
    Search for articles by this author
  • Author Footnotes
    3 ORCID iD: 0000-0001-9698-366X.
    Shigeaki Nonoyama
    Footnotes
    3 ORCID iD: 0000-0001-9698-366X.
    Affiliations
    Department of Pediatrics, National Defense Medical College Hospital, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
    Search for articles by this author
  • Author Footnotes
    1 ORCID iD: 0000-0002-0166-3469.
    2 ORCID iD: 0000-0002-3172-6221.
    3 ORCID iD: 0000-0001-9698-366X.

      Abstract

      Objective

      This study aimed to predict occurrence of acute encephalopathy syndromes (AES) immediately after febrile status epilepticus in children and to explore the usefulness of electroencephalogram (EEG) in the early diagnosis of AES.

      Methods

      We reviewed data from 120 children who had febrile status epilepticus lasting >30 min and were admitted to our hospital between 2012 and 2019. AES with reduced diffusion on brain magnetic resonance imaging was diagnosed in 11 of these patients. EEG and serum cytokines were analyzed in AES patients. Clinical symptoms and laboratory data were compared between AES and non-AES patients. Logistic regression analysis was used to identify early predictors of AES.

      Results

      Multivariate logistic regression identified serum creatinine as a risk factor for developing AES. A scoring model to predict AES in the post-ictal phase that included serum creatinine, sodium, aspartate aminotransferase, and glucose was developed, and a score of 2 or more predicted AES with sensitivity of 90.9% and specificity of 71.6%. Post-ictus EEG revealed non-convulsive status epilepticus in four of the seven AES patients.

      Conclusion

      Children with febrile status epilepticus may be at risk of developing severe AES with reduced diffusion. Post-ictus EEG and laboratory data can predict the occurrence of severe AES.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flink M.
        • Trauner D.A.
        Toxic and metabolic encephalopathies.
        in: David R.B. Bodensteiner J.B. Mandelbaum D.E. Olson B.J. Clinical pediatric neurology. 3rd ed. Demos Medical Publishing, New York2009: 117-127
        • Tada H.
        • Takanashi J.
        • Okuno H.
        • Kubota M.
        • Yamagata T.
        • Kawano G.
        • et al.
        Predictive score for early diagnosis of acute encephalopathy with biphasic seizures and late reduced diffusion (AESD).
        J Neurol Sci. 2015; 358: 62-65
        • Hoshino A.
        • Saitoh M.
        • Oka A.
        • Okumura A.
        • Kubota M.
        • Saito Y.
        • et al.
        Epidemiology of acute encephalopathy in Japan, with emphasis on the association of viruses and syndromes.
        Brain Dev. 2012; 34: 337-343
        • Mizuguchi M.
        • Yamanouchi H.
        • Ichiyama T.
        • Shiomi M.
        Acute encephalopathy associated with influenza and other viral infections.
        Acta Neurol Scand. 2007; 115: 45-56
        • Yokochi T.
        • Takeuchi T.
        • Mukai J.
        • Akita Y.
        • Nagai K.
        • Obu K.
        • et al.
        Prediction of acute encephalopathy with biphasic seizures and late reduced diffusion in patients with febrile status epilepticus.
        Brain Dev. 2016; 38: 217-224
      1. Diagnosis and laboratory examination The Japanese Society of Child Neurology. Clinical guideline for acute encephalopathy in children [Japanese] 2016 Shindan to Chiryo Sha Tokyo, Japan 14 19.

        • Fukuyama T.
        • Yamauchi S.
        • Amagasa S.
        • Hattori Y.
        • Sasaki T.
        • Nakajima H.
        • et al.
        Early prognostic factors for acute encephalopathy with reduced subcortical diffusion.
        Brain Dev. 2018; 40: 707-713
        • Chaves-Carballo E.
        • Montes J.E.
        • Nelson W.B.
        • Chrenka B.A.
        Hemorrhagic shock and encephalopathy. Clinical definition of a catastrophic syndrome in infants.
        Am J Dis Child. 1990; 144: 1079-1082
        • Takanashi J.
        • Tada H.
        • Terada H.
        • Barkovich A.J.
        Excitotoxicity in acute encephalopathy with biphasic seizures and late reduced diffusion.
        AJNR Am J Neuroradiol. 2009; 30: 132-135
        • Gastaut H.
        • Poirier F.
        • Payan H.
        • Salamon G.
        • Toga M.
        • Vigouroux M.H.H.E.
        syndrome; hemiconvulsions, hemiplegia, epilepsy.
        Epilepsia. 1960; 1: 418-447
        • Auvin S.
        • Bellavoine V.
        • Merdariu D.
        • Delanoë C.
        • Elmaleh-Bergés M.
        • Gressens P.
        • et al.
        Hemiconvulsion-hemiplegia-epilepsy syndrome: current understandings.
        Eur J Paediatr Neurol. 2012; 16: 413-421
        • Tada H.
        • Takanashi J.
        • Barkovich A.J.
        • Oba H.
        • Maeda M.
        • Tsukahara H.
        • et al.
        Clinically mild encephalitis/encephalopathy with a reversible splenial lesion.
        Neurology. 2004; 63: 1854-1858
        • Kanda Y.
        Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics.
        Bone Marrow Transplant. 2013; 48: 452-458
        • Azuma J.
        • Nabatame S.
        • Nakano S.
        • Iwatani Y.
        • Kitai Y.
        • Tominaga K.
        • et al.
        Prognostic factors for acute encephalopathy with bright tree appearance.
        Brain Dev. 2015; 37: 191-199
        • Nass R.D.
        • Zur B.
        • Elger C.E.
        • Holdenrieder S.
        • Surges R.
        Acute metabolic effects of tonic-clonic seizures.
        Epilepsia Open. 2019; 4: 599-608
        • Ishikawa J.
        • Yamamuro M.
        • Togawa M.
        • Shiomi M.
        Attempt of differentiation acute encephalopathy with febrile convulsive status epilepticus from febrile convulsive status epilepticus induced by human herpesvirus 6 at early stage.
        No To Hattatsu. 2010; 42: 283-286
        • Uemura O.
        • Honda M.
        • Matsuyama T.
        • Ishikura K.
        • Hataya H.
        • Yata N.
        • et al.
        Age, gender, and body length effects on reference serum creatinine levels determined by an enzymatic method in Japanese children: a multicenter study.
        Clin Exp Nephrol. 2011; 15: 694-699
        • Somers M.J.G.
        Fluid and electrolyte therapy in children.
        in: Avner E.D. Harmon W.H. Niaudet P. Yoshikawa N. Pediatric nephrology. 6th ed. Springer-Verlag, Berlin2009
        • Garg R.
        • Chaudhuri A.
        • Munschauer F.
        • Dandona P.
        Hyperglycemia, insulin, and acute ischemic stroke: a mechanistic justification for a trial of insulin infusion therapy.
        Stroke. 2006; 37: 267-273
        • Kagansky N.
        • Levy S.
        • Knobler H.
        The role of hyperglycemia in acute stroke.
        Arch Neurol. 2001; 58: 1209-1212
        • Nagase H.
        • Nakagawa T.
        • Aoki K.
        • Fujita K.
        • Saji Y.
        • Maruyama A.
        • et al.
        Therapeutic indicators of acute encephalopathy in patients with complex febrile seizures.
        Pediatr Int. 2013; 55: 310-314
        • Nishiyama M.
        • Ishida Y.
        • Yamaguchi H.
        • Tokumoto S.
        • Tomioka K.
        • Hongo H.
        • et al.
        Prediction of AESD and neurological sequelae in febrile status epilepticus.
        Brain Dev. 2021; 43: 616-625
        • Shiohama T.
        • Kanazawa M.
        • Anzai A.
        • Kato I.
        • Abe K.
        • Takeda N.
        • et al.
        Clinical study of status epilepticus in children.
        J Jpn Pediatr Soc. 2010; 114: 956-960
        • Ichinose F.
        • Nakamura T.
        • Kira R.
        • Furuno K.
        • Ishii S.
        • Takamura K.
        • et al.
        Incidence and risk factors of acute encephalopathy with biphasic seizures in febrile status epilepticus.
        Brain Dev. 2022; 44: 36-43
      2. Hirayama Y, Saito Y, Maegaki Y, Status Epilepticus Study Group. “symptomatic” infection-associated acute encephalopathy in children with underlying neurological disorders. Brain Dev 2017;39:243-7.

        • Maruyama A.
        • Tokumoto S.
        • Yamaguchi H.
        • Ishida Y.
        • Tanaka T.
        • Tomioka K.
        • et al.
        Early non-convulsive seizures are associated with the development of acute encephalopathy with biphasic seizures and late reduced diffusion.
        Brain Dev. 2021; 43: 548-555
        • Ohno A.
        • Okumura A.
        • Fukasawa T.
        • Nakata T.
        • Suzuki M.
        • Tanaka M.
        • et al.
        Acute encephalopathy with biphasic seizures and late reduced diffusion: predictive EEG findings.
        Brain Dev. 2022; 44: 221-228
        • Chen Y.
        • Mizuguchi H.
        • Yao D.
        • Ide M.
        • Kuroda Y.
        • Shigematsu Y.
        • et al.
        Thermolabile phenotype of carnitine palmitoyltransferase II variations as a predisposing factor for influenza-associated encephalopathy.
        FEBS Lett. 2005; 579: 2040-2044
        • Shinohara M.
        • Saitoh M.
        • Nishizawa D.
        • Ikeda K.
        • Hirose S.
        • Takanashi J.
        • et al.
        ADORA2A polymorphism predisposes children to encephalopathy with febrile status epilepticus.
        Neurology. 2013; 80: 1571-1576
        • Matsumoto H.
        • Hatanaka D.
        • Ogura Y.
        • Chida A.
        • Nakamura Y.
        • Nonoyama S.
        Severe human herpesvirus 6-associated encephalopathy in three children: analysis of cytokine profiles and the carnitine palmitoyltransferase 2 gene.
        Pediatr Infect Dis J. 2011; 30: 999-1001
        • Ichiyama T.
        • Suenaga N.
        • Kajimoto M.
        • Tohyama J.
        • Isumi H.
        • Kubota M.
        • et al.
        Serum and CSF levels of cytokines in acute encephalopathy following prolonged febrile seizures.
        Brain Dev. 2008; 30: 47-52
        • Hu Y.
        • Sun J.
        • Wu Z.
        • Yu J.
        • Cui Q.
        • Pu C.
        • et al.
        Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy.
        J Hematol Oncol. 2016; 9: 70
        • Gust J.
        • Hay K.A.
        • Hanafi L.A.
        • Li D.
        • Myerson D.
        • Gonzalez-Cuyar L.F.
        • et al.
        Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T Cells.
        Cancer Discov. 2017; 7: 1404-1419