Development of a system adapted for the diagnosis and evaluation of peroxisomal disorders by measuring bile acid intermediates



      Bile acid intermediates, 3α,7α,12α-trihydroxycholestanoic acid (THCA) and 3α,7α-dihydroxycholestanoic acid (DHCA), are metabolized in peroxisomes. Some peroxisomal disorders (PDs), such as Zellweger spectrum disorder (ZSD), show an accumulation of bile acid intermediates. In particular, ABCD3 deficiency and acyl-CoA-oxidase 2 deficiency are characterized by these metabolite abnormalities. In patients with ZSD, levels of bile acid intermediates can be lowered by a primary bile acid supplementation treatment; therefore, measuring their levels could help evaluate treatment effectiveness. Here, we established a method for the quantitative determination of bile acid intermediates (THCA/DHCA) for differentiating PDs and assessing bile acid treatment.


      Serum samples, obtained from patients with several forms of ZSD as well as peroxisomal β-oxidation enzyme deficiencies, were deproteinized and analyzed using liquid chromatography-mass spectrometry.


      Levels of the bile acid intermediates increased significantly in patients with Zellweger syndrome (ZS) and slightly in patients with neonatal adrenoleukodystrophy and infantile Refsum disease (IRD), reflecting the severity of these diseases. One patient with ZS treated with primary bile acids for 6 months showed slightly decreased serum DHCA levels but significantly increased serum THCA levels. One patient with IRD who underwent living-donor liver transplantation showed a rapid decrease in serum THCA and DHCA levels, which remained undetected for 6 years. In all controls, THCA and DHCA levels were below the detection limit.


      The analytical method developed in this study is useful for diagnosing various PD and validating bile acid treatment. Additionally, it can help predict the prognosis of patients with PD and support treatment strategies.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Wanders R.J.
        • Waterham H.R.
        • Ferdinandusse S.
        Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum.
        Front Cell Dev Biol. 2015; 3: 83
        • Waterham H.R.
        • Ferdinandusse S.
        • Wanders R.J.
        Human disorders of peroxisome metabolism and biogenesis.
        Biochim Biophys Acta. 2016; 1863: 922-933
        • Vilarinho S.
        • Sari S.
        • Mazzacuva F.
        • Bilgüvar K.
        • Esendagli-Yilmaz G.
        • Jain D.
        • et al.
        ACOX2 deficiency: A disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment.
        Proc Natl Acad Sci U S A. 2016; 113: 11289-11293
        • Shimozawa N.
        Diagnosis of peroxisomal disorders.
        in: Imanaka T. Shimozawa N. peroxisomes: biogenesis, functions, and role in human disease. Springer Nature, London2019: 159-169
        • Takemoto Y.
        • Suzuki Y.
        • Horibe R.
        • Shimozawa N.
        • Wanders R.J.
        • Kondo N.
        Gas chromatography/mass spectrometry analysis of very long chain fatty acids, docosahexaenoic acid, phytanic acid and plasmalogen for the screening of peroxisomal disorders.
        Brain Dev. 2003; 25: 481-487
        • Takashima S.
        • Toyoshi K.
        • Itoh T.
        • Kajiwara N.
        • Honda A.
        • Ohba A.
        • et al.
        Detection of unusual very-long-chain fatty acid and ether lipid derivatives in the fibroblasts and plasma of patients with peroxisomal diseases using liquid chromatography-mass spectrometry.
        Mol Genet Metab. 2017; 120: 255-268
        • Ferdinandusse S.
        • Denis S.
        • Faust P.L.
        • Wanders R.J.
        Bile acids: the role of peroxisomes.
        J Lipid Res. 2009; 50: 2139-2147
        • Ferdinandusse S.
        • Jimenez-Sanchez G.
        • Koster J.
        • Denis S.
        • Van Roermund C.W.
        • Silva-Zolezzi I.
        • et al.
        A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3.
        Hum Mol Genet. 2015; 24: 361-370
        • Ferdinandusse S.
        • Denis S.
        • Dacremont G.
        • Wanders R.J.
        Toxicity of peroxisomal C27-bile acid intermediates.
        Mol Genet Metab. 2009; 96: 121-128
        • Heubi J.E.
        • Setchell K.D.R.
        Open-label phase 3 continuation study of cholic acid in patients with inborn errors of bile acid synthesis.
        J Pediatr Gastroenterol Nutr. 2020; 70: 423-429
        • Kanda Y.
        Investigation of the freely available easy-to-use software 'EZR' for medical statistics.
        Bone Marrow Transplant. 2013; 48: 452-458
        • Ferdinandusse S.
        • Overmars H.
        • Denis S.
        • Waterham H.R.
        • Wanders R.J.
        • Vreken P.
        Plasma analysis of di- and trihydroxycholestanoic acid diastereoisomers in peroxisomal alpha-methylacyl-CoA racemase deficiency.
        J Lipid Res. 2001; 42: 137-141
      1. Shimoji Y. A case of Zellweger syndrome smoothly moved to home. Journal of Japan Society for Neonatal Health and Development. 2021;33(2):437(in Japanese).

        • Matsunami M.
        • Shimozawa N.
        • Fukuda A.
        • Kumagai T.
        • Kubota M.
        • Chong P.F.
        • et al.
        Living-donor liver transplantation from a heterozygous parent for infantile refsum disease.
        Pediatrics. 2016; 137
        • Argyriou C.
        • D'Agostino M.D.
        • Braverman N.
        Peroxisome biogenesis disorders.
        Transl Sci Rare Dis. 2016; 1: 111-144
        • Ferdinandusse S.
        • Ylianttila M.S.
        • Gloerich J.
        • Koski M.K.
        • Oostheim W.
        • Waterham H.R.
        • et al.
        Mutational spectrum of D-bifunctional protein deficiency and structure-based genotype-phenotype analysis.
        Am J Hum Genet. 2006; 78: 112-124
        • Huyghe S.
        • Mannaerts G.P.
        • Baes M.
        • Van Veldhoven P.P.
        Peroxisomal multifunctional protein-2: the enzyme, the patients and the knockout mouse model.
        Biochim Biophys Acta. 2006; 1761: 973-994
        • Palmeira C.M.
        • Rolo A.P.
        Mitochondrially-mediated toxicity of bile acids.
        Toxicology. 2004; 203: 1-15
        • Shinde A.B.
        • Baboota R.K.
        • Denis S.
        • Loizides-Mangold U.
        • Peeters A.
        • Espeel M.
        • et al.
        Mitochondrial disruption in peroxisome deficient cells is hepatocyte selective but is not mediated by common hepatic peroxisomal metabolites.
        Mitochondrion. 2018; 39: 51-59
        • Carazo A.
        • Hyrsova L.
        • Dusek J.
        • Chodounska H.
        • Horvatova A.
        • Berka K.
        • et al.
        Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor.
        Toxicol Lett. 2017; 265: 86-96
        • Maeda K.
        • Kimura A.
        • Yamato Y.
        • Nittono H.
        • Takei H.
        • Sato T.
        • et al.
        Oral bile Acid treatment in two Japanese patients with Zellweger syndrome.
        J Pediatr Gastroenterol Nutr. 2002; 35: 227-230
        • Setchell K.D.
        • Bragetti P.
        • Zimmer-Nechemias L.
        • Daugherty C.
        • Pelli M.A.
        • Vaccaro R.
        • et al.
        Oral bile acid treatment and the patient with Zellweger syndrome.
        Hepatology. 1992; 15: 198-207
        • Klouwer F.C.C.
        • Koot B.G.P.
        • Berendse K.
        • Kemper E.M.
        • Ferdinandusse S.
        • Koelfat K.V.K.
        • et al.
        The cholic acid extension study in Zellweger spectrum disorders: Results and implications for therapy.
        J Inherit Metab Dis. 2019; 42: 303-312
        • Setchell K.D.
        • Heubi J.E.
        Defects in bile acid biosynthesis–diagnosis and treatment.
        J Pediatr Gastroenterol Nutr. 2006; 43: S17-S22
        • Chávez-Talavera O.
        • Tailleux A.
        • Lefebvre P.
        • Staels B.
        Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease.
        Gastroenterology. 2017; 152 (1679–94.e3)
        • Faust P.L.
        • Banka D.
        • Siriratsivawong R.
        • Ng V.G.
        • Wikander T.M.
        Peroxisome biogenesis disorders: the role of peroxisomes and metabolic dysfunction in developing brain.
        J Inherit Metab Dis. 2005; 28: 369-383
        • Keane M.H.
        • Overmars H.
        • Wikander T.M.
        • Ferdinandusse S.
        • Duran M.
        • Wanders R.J.
        • et al.
        Bile acid treatment alters hepatic disease and bile acid transport in peroxisome-deficient PEX2 Zellweger mice.
        Hepatology. 2007; 45: 982-997
        • Van Maldergem L.
        • Moser A.B.
        • Vincent M.F.
        • Roland D.
        • Reding R.
        • Otte J.B.
        • et al.
        Orthotopic liver transplantation from a living-related donor in an infant with a peroxisome biogenesis defect of the infantile Refsum disease type.
        J Inherit Metab Dis. 2005; 28: 593-600
        • Demaret T.
        • Varma S.
        • Stephenne X.
        • Smets F.
        • Scheers I.
        • Wanders R.
        • et al.
        Living-donor liver transplantation for mild Zellweger spectrum disorder: Up to 17 years follow-up.
        Pediatr Transplant. 2018; 22: e13112
        • Wanders R.J.
        Metabolic functions of peroxisomes in health and disease.
        Biochimie. 2014; 98: 36-44