Handgrip and finger flexion strength in children: A cross-sectional assessment of age-related normative data and application as a clinical functional marker in paediatric neuromuscular disorders



      The aim of this study was to evaluate handgrip and finger flexion strength (HGFS) as functional marker for disease progression in children with neuromuscular disorders (NMD) and present normative data in a paediatric healthy cohort.


      We applied the fixed hand and finger dynamometer HFD 200 to assess HGFS under standardised, isometric and biomechanical conditions. In our cross-sectional study HGFS was analysed in n = 233 paediatric healthy controls (HC) and a cohort of n = 33 children with NMD between five and 18 years. In seven children with spinal muscular atrophy (SMA), HGFS were assessed prior to and under treatment with nusinersen over a two months period. HGFS of children with NMD was correlated with respiratory parameters, anthropometric data, hand function and motor scores.


      Patients with NMD exhibited a heterogenous HGFS pattern. HGFS was lower than in HC (p < 0.001). Children with SMA gained a significant increase in strength after two months of treatment (p < 0.05, r = 0.75–0.9).


      HGFS is a sensitive functional marker in paediatric NMD to identify minimal changes in distal muscle strength. HGFS may evolve as a sensitive outcome measure to monitor upcoming therapeutic interventions in particular for non-ambulant patients with NMD.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Finkel R.S.
        • Mercuri E.
        • Darras B.T.
        • Connolly A.M.
        • Kuntz N.L.
        • Kirschner J.
        • et al.
        Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy.
        N Engl J Med. 2017; 377: 1723-1732
        • Day J.W.
        • Finkel R.S.
        • Chiriboga C.A.
        • Connolly A.M.
        • Crawford T.O.
        • Darras B.T.
        • et al.
        Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial.
        Lancet Neurol. 2021; 20: 284-293
        • McDonald C.M.
        • Campbell C.
        • Torricelli R.E.
        • Finkel R.S.
        • Flanigan K.M.
        • Goemans N.
        • et al.
        Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial.
        Lancet. 2017; 390: 1489-1498
        • Straub V.
        • Balabanov P.
        • Bushby K.
        • Ensini M.
        • Goemans N.
        • De Luca A.
        • et al.
        Stakeholder cooperation to overcome challenges in orphan medicine development: the example of Duchenne muscular dystrophy.
        Lancet Neurol. 2016; 15: 882-890
        • Smeriglio P.
        • Langard P.
        • Querin G.
        • Biferi M.G.
        The Identification of Novel Biomarkers Is Required to Improve Adult SMA Patient Stratification.
        Diagnos Treatm J Pers Med. 2020; 10: 75
        • Mazzone E.S.
        • Messina S.
        • Vasco G.
        • Main M.
        • Eagle M.
        • D’Amico A.
        • et al.
        Reliability of the North Star Ambulatory Assessment in a multicentric setting.
        Neuromuscul Disord. 2009; 19: 458-461
        • Stehling F.
        • Dohna-Schwake C.
        • Mellies U.
        • Grosse-Onnebrink J.
        Decline in Lung Volume With Duchenne Muscular Dystrophy Is Associated With Ventilation Inhomogeneity.
        Respir Care. 2015; 60: 1257-1263
        • Birnkrant D.J.
        • Ararat E.
        • Mhanna M.J.
        Cardiac phenotype determines survival in Duchenne muscular dystrophy.
        Pediatr Pulmonol. 2016; 51: 70-76
        • Mazzone E.S.
        • Mayhew A.
        • Montes J.
        • Ramsey D.
        • Fanelli L.
        • Young S.D.
        • et al.
        Revised upper limb module for spinal muscular atrophy: Development of a new module.
        Muscle Nerve. 2017; 55: 869-874
        • Servais L.
        • Deconinck N.
        • Moraux A.
        • Benali M.
        • Canal A.
        • Van Parys F.
        • et al.
        Innovative methods to assess upper limb strength and function in non-ambulant Duchenne patients.
        Neuromuscul Disord. 2013; 23: 139-148
        • Pizzato T.M.
        • Baptista C.R.J.A.
        • Souza M.A.
        • Benedicto M.M.B.
        • Martinez E.Z.
        • Mattiello-Sverzut A.C.
        Longitudinal assessment of grip strength using bulb dynamometer in Duchenne Muscular Dystrophy.
        Braz J Phys Ther. 2014; 18: 245-251
        • Roberts-Clarke D.
        • Fornusek C.
        • Singh M.F.
        • Burns J.
        • Hackett D.
        Examining hand dominance using dynamometric grip strength testing as evidence for overwork weakness in Charcot–Marie–Tooth disease: a systematic review and meta-analysis.
        Int J Rehabil Res. 2016; 39: 189-196
        • Hogrel J.-Y.
        • Decostre V.
        • Ledoux I.
        • de Antonio M.
        • Niks E.H.
        • de Groot I.
        • et al.
        Normalized grip strength is a sensitive outcome measure through all stages of Duchenne muscular dystrophy.
        J Neurol. 2020; 267: 2022-2028
        • Emery A.E.H.
        Population frequencies of inherited neuromuscular diseases–a world survey.
        Neuromuscul Disord. 1991; 1: 19-29
        • Kolb S.J.
        • Kissel J.T.
        Spinal Muscular Atrophy.
        Neurol Clin. 2015; 33: 831-846
        • Mayhew A.
        • Mazzone E.S.
        • Eagle M.
        • Duong T.
        • Ash M.
        • Decostre V.
        • et al.
        Development of the Performance of the Upper Limb module for Duchenne muscular dystrophy.
        Dev Med Child Neurol. 2013; 55: 1038-1045
        • Eggermann K.
        • Gess B.
        • Häusler M.
        • Weis J.
        • Hahn A.
        • Kurth I.
        Hereditary Neuropathies Dtsch Arztebl Int. 2018; 115: 91-97
        • Weber C.
        • Weber H.
        Collection and evaluation of physical performance of grade 5 to 12 high school students with anthropometric data and hand strength data.
        Biomedical Engineering / Biomedizinische Technik. 2012; 57
      1. Athenstaedt O. Development of a standard value system of maximum hand and finger flexion forces based on anthropometric influencing variables as a basis for performance diagnostics of the hands of conservatively treated patients with vertebragen cervical pain syndrome. [translated from German by the present author] Dr. med. Medizinische Akademie “Carl Gustav Carus” Dresden, 1991.

        • Weber H.
        Restoration of the hand's ability to work. A case study with a rehabilitation method based on work physiology and neurophysiology.
        in: translated from German by the present author. Die BG, 1999: 202-207
        • Weber H.
        Wiederherstellung der Handfunktion bei chronischem MRestoration of hand functionality in a case of chronic Sudeck’s disease: Effect of technically assisted sensomotoric exercises in a case of 5-year-old complex regional pain syndrome (CRPS I) of the hand.
        Sudeck Obere Extremität. 2011; 6: 137-142
        • Pechmann A.
        • König K.
        • Bernert G.
        • Schachtrup K.
        • Schara U.
        • Schorling D.
        • et al.
        SMArtCARE - A platform to collect real-life outcome data of patients with spinal muscular atrophy.
        Orphanet J Rare Dis. 2019; 14
        • O’Hagen J.M.
        • Glanzman A.M.
        • McDermott M.P.
        • Ryan P.A.
        • Flickinger J.
        • Quigley J.
        • et al.
        An expanded version of the Hammersmith Functional Motor Scale for SMA II and III patients.
        Neuromuscul. 2007; 17: 693-697
        • Weber-Sannwald A.
        • Poths S.
        • Philippi H.
        Canadian Occupational Performance Measure (COPM): A client- centered interview in parents and children with movement disorders.
        Neuropediatrics. 2011; 42: P028
        • Gopinath B.
        • Kifley A.
        • Liew G.
        • Mitchell P.
        Handgrip strength and its association with functional independence, depressive symptoms and quality of life in older adults.
        Maturitas. 2017; 106: 92-94
        • Gąsior J.
        • Pawłowski M.
        • Jeleń P.
        • Rameckers E.
        • Williams C.
        • Makuch R.
        • et al.
        Test-Retest Reliability of Handgrip Strength Measurement in Children and Preadolescents.
        Int J Environ Res Public Health. 2020; 17: 8026
        • De Smet L.
        • Vercammen A.
        Grip strength in children.
        J Pediatr Orthop B. 2001; 10: 352-354
        • Molenaar H.M.T.
        • Selles R.W.
        • Zuidam J.M.
        • Willemsen S.P.
        • Stam H.J.
        • Hovius S.E.R.
        Growth diagrams for grip strength in children.
        Clin Orthop Relat Res. 2010; 468: 217-223
        • Alahmari K.A.
        • Silvian S.P.
        • Reddy R.S.
        • Kakaraparthi V.N.
        • Ahmad I.
        • Alam M.M.
        Hand grip strength determination for healthy males in Saudi Arabia: A study of the relationship with age, body mass index, hand length and forearm circumference using a hand-held dynamometer.
        J Int Med Res. 2017; 45: 540-548
        • Alahmari K.A.
        • Kakaraparthi V.N.
        • Reddy R.S.
        • Silvian P.S.
        • Ahmad I.
        • Rengaramanujam K.
        Percentage difference of hand dimensions and their correlation with hand grip and pinch strength among schoolchildren in Saudi Arabia.
        Niger J Clin Pract. 2019; 22: 1356-1364
        • Mahmoud A.G.
        • Elhadidy E.I.
        • Hamza M.S.
        • Mohamed N.E.
        Determining correlations between hand grip strength and anthropometric measurements in preschool children.
        J Taibah Univ Med Sci. 2020; 15: 75-81
        • Agarwal P.
        • Sahu S.
        Determination of hand and palm area as a ratio of body surface area in Indian population.
        Indian J Plast Surg. 2010; 43: 49-53
        • Klentrou P.
        Influence of Exercise and Training on Critical Stages of Bone Growth and Development.
        Pediatr Exerc Sci. 2016; 28: 178-186
        • Herrmann M.
        • Engelke K.
        • Ebert R.
        • Müller-Deubert S.
        • Rudert M.
        • Ziouti F.
        • et al.
        Interactions between Muscle and Bone-Where Physics Meets Biology.
        Biomolecules. 2020; 10: 432
        • Hill E.L.
        • Khanem F.
        The development of hand preference in children: the effect of task demands and links with manual dexterity.
        Brain Cogn. 2009; 71: 99-107
        • Mühldorfer-Fodor M.
        • Ziegler S.
        • Harms C.
        • Neumann J.
        • Kundt G.
        • Mittlmeier T.
        • et al.
        Load distribution of the hand during cylinder grip analyzed by Manugraphy.
        J Hand Ther. 2017; 30: 529-537
        • Miller A.E.J.
        • MacDougall J.D.
        • Tarnopolsky M.A.
        • Sale D.G.
        Gender differences in strength and muscle fiber characteristics.
        Eur J Appl Physiol Occup Physiol. 1993; 66: 254-262
        • Herbst K.L.
        • Bhasin S.
        Testosterone action on skeletal muscle.
        Curr Opin Clin Nutr Metab Care. 2004; 7: 271-277
        • Brener A.
        • Lebenthal Y.
        • Shtamler A.
        • Levy S.
        • Stein R.
        • Fattal-Valevski A.
        • et al.
        The endocrine manifestations of spinal muscular atrophy, a real-life observational study.
        Neuromuscul. 2020; 30: 270-276
        • Iannaccone S.T.
        American Spinal Muscular Atrophy Randomized Trials (AmSMART) Group. Outcome measures for pediatric spinal muscular atrophy.
        Arch Neurol. 2002; 59: 1445-1450
        • Merlini L.
        • Bertini E.
        • Minetti C.
        • Mongini T.
        • Morandi L.
        • Angelini C.
        • et al.
        Motor function-muscle strength relationship in spinal muscular atrophy.
        Muscle Nerve. 2004; 29: 548-552
        • Seferian A.M.
        • Moraux A.
        • Canal A.
        • Decostre V.
        • Diebate O.
        • Le Moing A.G.
        • et al.
        Upper limb evaluation and one-year follow up of non-ambulant patients with spinal muscular atrophy: an observational multicenter trial.
        PLoS ONE. 2015; 10
        • Ardon M.S.
        • Selles R.W.
        • Hovius S.E.R.
        • Stam H.J.
        • Murawska M.
        • Roebroeck M.E.
        • et al.
        Stronger relation between impairment and manual capacity in the non-dominant hand than the dominant hand in congenital hand differences; implications for surgical and therapeutic interventions.
        J Hand Ther. 2014; 27: 201-208
        • Bohannon R.W.
        Grip Strength: An Indispensable Biomarker For Older Adults.
        Clin Interv Aging. 2019; 14: 1681-1691
        • De Wel B.
        • Goosens V.
        • Sobota A.
        • Van Camp E.
        • Geukens E.
        • Van Kerschaver G.
        • et al.
        Nusinersen treatment significantly improves hand grip strength, hand motor function and MRC sum scores in adult patients with spinal muscular atrophy types 3 and 4.
        J Neurol. 2021; 268: 923-935
        • Veerapandiyan A.
        • Eichinger K.
        • Guntrum D.
        • Kwon J.
        • Baker L.
        • Collins E.
        • et al.
        Nusinersen for older patients with spinal muscular atrophy: A real-world clinical setting experience.
        Muscle Nerve. 2020; 61: 222-226
        • Hagenacker T.
        • Wurster C.D.
        • Günther R.
        • Schreiber-Katz O.
        • Osmanovic A.
        • Petri S.
        • et al.
        Nusinersen in adults with 5q spinal muscular atrophy: a non-interventional, multicentre, observational cohort study.
        Lancet Neurol. 2020; 19: 317-325
        • Gómez‐García de la Banda M.
        • Amaddeo A.
        • Khirani S.
        • Pruvost S.
        • Barnerias C.
        • Dabaj I.
        • et al.
        Assessment of respiratory muscles and motor function in children with SMA treated by nusinersen.
        Pediatr Pulmonol. 2021; 56: 299-306