Advertisement

Interacting with AP1 complex mutated synergin gamma (SYNRG) reveals a novel coatopathy in the form of complicated hereditary spastic paraplegia

      Abstract

      Background

      Today, it is known that about 80 genes are involved in the etiology of hereditary spastic paraplegia. However, there are many cases whose etiology could not be determined by extensive genetic tests such as whole-exome sequencing, clinical exome.

      Methods

      Candidate genes were determined, since no clinically illuminating variant was detected in the whole-exome sequencing analysis of three patients, two of whom were siblings, with a complex hereditary spastic paraplegia phenotype.

      Results

      The p.Leu1202Pro variant in the SYNRG gene in the 1st and 2nd cases, and the p.Gly533* variant in the 3rd case were homozygous.

      Discussion

      We suggest that the SYNRG gene interacting with AP-1 (adaptor-related protein) from the AP complex family may cause the complex hereditary spastic paraplegia phenotype with extensive clinical spectrum. It may be important to evaluate SYNRG gene variants in patients with hereditary spastic paraplegia whose etiology has not been clarified.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Harding A.E.
        Classification of the hereditary ataxias and paraplegias.
        Lancet. 1983; 321: 1151-1155
        • Blumkin L.
        • Lerman-Sagie T.
        • Lev D.
        • Yosovich K.
        • Leshinsky-Silver E.
        A new locus (SPG47) maps to 1p13.2-1p12 in an Arabic family with complicated autosomal recessive hereditary spastic paraplegia and thin corpus callosum.
        J Neurol Sci. 2011; 305: 67-70
        • Erichsen A.K.
        • Koht J.
        • Stray-Pedersen A.
        • Abdelnoor M.
        • Tallaksen C.M.E.
        Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study.
        Brain. 2009; 132: 1577-1588
        • Mackay-Sim A.
        Hereditary spastic paraplegia: from genes, cells and networks to novel pathways for drug discovery.
        Brain Sci. 2021; 11: 403
        • Page L.J.
        • Sowerby P.J.
        • Lui W.W.
        • Robinson M.S.
        Gamma-synergin: an EH domain-containing protein that interacts with gamma-adaptin.
        J Cell Biol. 1999; 146: 993-1004
        • Köhler S.
        • Gargano M.
        • Matentzoglu N.
        • Carmody L.C.
        • Lewis-Smith D.
        • Vasilevsky N.A.
        • et al.
        The Human Phenotype Ontology in 2021.
        Nucleic Acids Res. 2021; 49: D1207-D1217
        • Guardia C.M.
        • De Pace R.
        • Mattera R.
        • Bonifacino J.S.
        Neuronal functions of adaptor complexes involved in protein sorting.
        Curr Opin Neurobiol. 2018; 51: 103-110
        • Dacks J.B.
        • Robinson M.S.
        Outerwear through the ages: evolutionary cell biology of vesicle coats.
        Curr Opin Cell Biol. 2017; 47: 108-116
        • Dell'Angelica E.C.
        • Bonifacino J.S.
        Coatopathies: genetic disorders of protein coats.
        Annu Rev Cell Dev Biol. 2019; 35: 131-168
        • Hirst J.
        • Borner G.H.
        • Antrobus R.
        • Peden A.
        • Hodson N.
        • Sahlender D.
        • et al.
        Distinct and overlapping roles for AP-1 and GGAs revealed by the “knocksideways” system.
        Curr Biol. 2012; 22: 1711-1716
        • Bonifacino J.S.
        • Rojas R.
        Retrograde transport from endosomes to the trans-Golgi network.
        Nat Rev Mol Cell Biol. 2006; 7: 568-579
        • Tüysüz B.
        • Bilguvar K.
        • Koçer N.
        • Yalçınkaya C.
        • Çağlayan O.
        • Gül E.
        • et al.
        Autosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: expansion of the facial and neuroimaging features.
        Am J Med Genet A. 2014; 164: 1677-1685
        • Verkerk A.J.
        • Schot R.
        • Dumee B.
        • Schellekens K.
        • Swagemakers S.
        • Bertoli-Avella A.M.
        • et al.
        Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy.
        Am J Hum Genet. 2009; 85: 40-52
        • Pensato V.
        • Castellotti B.
        • Gellera C.
        • Pareyson D.
        • Ciano C.
        • Nanetti L.
        • et al.
        Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48.
        Brain. 2014; 137: 1907-1920
        • Nakamura A.
        • Izumi K.
        • Umehara F.
        • Kuriyama M.
        • Hokezu Y.
        • Nakagawa M.
        • et al.
        Familial spastic paraplegia with mental impairment and thin corpus callosum.
        J Neurol Sci. 1995; 131: 35-42