Advertisement

Quantitative evaluation of regional cerebral blood flow changes during childhood using 123I-N-isopropyl-iodoamphetamine single-photon emission computed tomography

  • Yuko Hirata
    Correspondence
    Corresponding author at: Division of Neurology, Saitama Children’s Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama-City, Saitama 330-8777, Japan.
    Affiliations
    Division of Neurology, Saitama Children’s Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama-city, Saitama 330-8777, Japan

    Department of Pediatrics, The Jikei University School of Medicine, 3-19-18 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
    Search for articles by this author
  • Shin-ichiro Hamano
    Affiliations
    Division of Neurology, Saitama Children’s Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama-city, Saitama 330-8777, Japan
    Search for articles by this author
  • Satoru Ikemoto
    Affiliations
    Division of Neurology, Saitama Children’s Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama-city, Saitama 330-8777, Japan

    Department of Pediatrics, The Jikei University School of Medicine, 3-19-18 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
    Search for articles by this author
  • Atsuko Oba
    Affiliations
    Department of Pediatrics, The Jikei University School of Medicine, 3-19-18 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
    Search for articles by this author
  • Ryuki Matsuura
    Affiliations
    Division of Neurology, Saitama Children’s Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama-city, Saitama 330-8777, Japan

    Department of Pediatrics, The Jikei University School of Medicine, 3-19-18 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
    Search for articles by this author

      Abstract

      Objective

      To quantitatively evaluate regional cerebral blood flow (rCBF) and regional developmental changes during childhood using 123I-N-isopropyl-iodoamphetamine single-photon emission computed tomography (SPECT) and autoradiography.

      Methods

      We retrospectively analyzed quantitative values of rCBF in 75 children (29 girls) aged between 16 days and 178 months (median: 12 months), whose brain images, including magnetic resonance imaging and SPECT data, were normal under visual inspection at Saitama Children’s Medical Center between 2005 and 2015. The subjects had normal psychomotor development, no focal neurological abnormalities, and neither respiratory nor cardiac disease at the time of examination. Regions of interest were placed automatically using a three-dimensional stereotactic template.

      Results

      rCBF was lowest in neonates, who had greater rCBF in the lenticular nucleus, thalamus, and cerebellum than the cerebral cortices. rCBF increased rapidly during the first year of life, reaching approximately twice the adult levels at 8 years, and then fell to approximately adult levels in the late teenage years. Cerebral cortex rCBF sequentially increased in the posterior, central, parietal, temporal, and callosomarginal regions during infancy and childhood.

      Conclusions

      rCBF changed dramatically throughout childhood and ranged from lower than adult values to approximately two times higher than adult values. It had different trajectories in each region during brain development. Understanding this dynamic developmental change is necessary for SPECT image evaluation in children.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chiron C.
        • Raynaud C.
        • Mazière B.
        • Zilbovicius M.
        • Laflamme L.
        • Masure M.C.
        • et al.
        Changes in regional cerebral blood flow during brain maturation in children and adolescents.
        J Nucl Med. 1992; 33: 696-703
        • Barthel H.
        • Wiener M.
        • Dannenberg C.
        • Bettin S.
        • Sattler B.
        • Knapp W.H.
        Age-specific cerebral perfusion in 4- to 15-year-old children: a high-resolution brain SPECT study using 99mTc-ECD.
        Eur J Nucl Med. 1997; 24: 1245-1252
        • Schiepers C.
        • Verbruggen A.
        • Casaer P.
        • De Roo M.
        Normal brain perfusion pattern of Technetium-99m-ethylcysteinate dimer in children.
        J Nucl Med. 1997; 38: 1115-1120
        • Kobayashi A.
        • Ito M.
        • Shiraishi H.
        • Kishi K.
        • Sejima H.
        • Haneda N.
        • et al.
        A quantitative study of regional cerebral blood flow in childhood using 123I-IMP SPECT: with emphasis on age-related changes (in Japanese).
        No To Hattatsu (Tokyo). 1996; 28: 501-507
        • Takahasi T.
        • Shirane R.
        • Sato S.
        • Yoshimoto T.
        Developmental changes of cerebral blood flow and oxygen metabolism in children.
        Am H Neuroradiol. 1999; 20: 917-922
        • Chugani H.T.
        • Phelps M.E.
        • Mazziotta J.C.
        Positron emission tomography study of human functional development.
        Ann Neurol. 1987; 22: 487-497
        • Kinnala A.
        • Suhonenpolvi H.
        • Aarimaa T.
        • Kero P.
        • Korvenranta H.
        • Ruotsalainen U.
        • et al.
        Cerebral metabolic rate for glucose during the first six months of life: an FDG positron emission tomography study.
        Arch Dis Child. 1996; 74: F153-F157
        • Shan Z.Y.
        • Leiker A.J.
        • Onar-Tomas A.
        • Li Y.
        • Feng T.
        • Reddick W.E.
        • et al.
        Cerebral glucose metabolism on positron emission tomography of children.
        Hum Brain Mapp. 2014; 35: 2297-2309
        • Wintermark M.
        • Lepori D.
        • Cotting J.
        • Roulet E.
        • van Melle G.
        • Meuli R.
        • et al.
        Brain perfusion in children: evolution with age assessed by quantitateive perfusion computed tomogramphy.
        Pediatrics. 2004; 133: 1642-1652
        • Taki Y.
        • Hashizume H.
        • Sassa Y.
        • Takeuchi H.
        • Wu K.
        • Asano M.
        • et al.
        Correlation between gray matter density-adjusted brain perfusion and age using brain MR images of 202 healthy children.
        Hum Brain Mapp. 2011; 32: 1973-1985
        • Avants B.B.
        • Duda J.T.
        • Kilroy E.
        • Krasileva K.
        • Jann K.
        • Kandel B.T.
        • et al.
        The pediatric template of brain perfusion.
        Sci Data. 2015; 2: 150003
        • Iida H.
        • Itoh H.
        • Nakazawa M.
        • Hatazawa J.
        • Nishimura H.
        • Onishi Y.
        • et al.
        Quantitative mapping of regional cerebral blood flow using iodo-123-IMP and SPECT.
        J Nucl Med. 1994; 35: 2019-2030
        • Takeuchi R.
        • Yonekura Y.
        • Matsuda H.
        • Konishi J.
        Usefulness of a three-dimensional stereotaxic ROI template on anatomically standardized 99mTc-ECD SPECT.
        Eur J Nucl Mol Imaging. 2002; 29: 331-341
        • Takeuchi R.
        • Yonekura Y.
        • Takeda S.K.
        • Fujita K.
        • Konishi J.
        Fully automated quantification of regional cerebral blood flow with tree-dimensional stereotaxic region of interest template: validation using magnetic resonance imaging – Technical Note.
        Neurol Med Chir (Tokyo). 2003; 43: 153-162
        • Takeuchi R.
        • Matsuda H.
        • Yoshioka K.
        • Yonekura Y.
        Cerebral blood flow SPECT in transient global amnesia with automated ROI analysis by 3DSRT.
        Eur J Nucl Med Mol Imaging. 2004; 31: 578-589
        • Ito M.
        • Mori K.
        • Hashimoto T.
        • Miyazaki M.
        • Hori A.
        • Kagami S.
        • et al.
        Findings of brain 99mTc-ECD SPECT in high-functioning autism-3-dimensional stereotactic ROI template analysis of brain SPECT.
        J Med Invest. 2005; 52: 49-56
        • Kobayashi S.
        • Tateno M.
        • Utsumi K.
        • Takahashi A.
        • Saitoh M.
        • Morii H.
        • et al.
        Quantitative analysis of brain perfusion SPECT in Alzheimer's disease using a fully automated regional cerebral blood flow quantification software, 3DSRT.
        J Neurol Sci. 2008; 264: 27-33
        • Kimura N.
        • Kumamoto T.
        • Masuda T.
        • Nomura Y.
        • Hanaoka T.
        • Hazama Y.
        • et al.
        Evaluation of the effect of thyrotropin releasing hormone (TRH) on regional cerebral blood flow in spinocerebellar degeneration using 3DSRT.
        J Neurol Sci. 2009; 281: 93-98
        • Hamano S.
        • Higurashi N.
        • Koichihara R.
        • Oritsu T.
        • Kikuchi K.
        • Yoshinari S.
        • et al.
        Interictal cerebral blood flow abnormality in cryptogenic West syndrome.
        Epilepsia. 2010; 51: 1259-1265
        • Hatazawa J.
        • Iida H.
        • Shimosegawa E.
        • Sato T.
        • Murakami M.
        • Miura Y.
        Regional cerebral blood flow measurement with iodine-123-IMP autoradiography: normal values, reproducibility and sensitivity to hypoperfusion.
        J Nucl Med. 1997; 38: 1102-1108
        • Kennedy C.
        • Sokoloff L.
        An adaptation of the nitrous oxide method to the study of the cerebral circulation in children; normal values for cerebral blood flow and cerebral metabolic rate in childhood.
        J Clin Invest. 1957; 36: 1130-1137
        • Rubinstein M.
        • Denays R.
        • Ham H.R.
        • Piepsz A.
        • VanPachterbeke T.
        • Haumont D.
        • et al.
        Function imaging of brain maturation in humans using iodine-123 iodoamphetamine and SPECT.
        J Nucl Med. 1989; 30: 1982-1985
        • Kato T.
        • Okuyama K.
        Assessment of maturation and impairment of the brain by I-123 iodoamphetamine SPECT and MR imaging in children.
        Showa Univ J Med Sci. 1993; 5: 99-114
        • Tokumura A.M.
        • Barkovich A.J.
        • O’uchi T.
        • Matsuo T.
        • Kusano S.
        The evolution of cerebral blood flow in the developing brain: evaluation with iodine-123 iodoamphetamine SPECT and correlation with MR imaging.
        Am J Neuroradiol. 1999; 20: 845-852
        • London K.
        • Howman-Giles R.
        Normal cerebral FDG uptake during childhood.
        Eur J Nucl Med Mol Imaging. 2014; 41: 723-735
        • Giedd J.N.
        • Blumenthal J.
        • Jeffries N.O.
        • Gastellanos F.X.
        • Liu H.
        • Zijdenbos A.
        • et al.
        Brain development during childhood and adolescence: a longitudinal MRI study.
        Nat Neurosci. 1999; 2: 861-863
        • Huttenlocher P.R.
        Synaptic density in human frontal cortex-developmental changes and effects of aging.
        Brain Res. 1979; 163: 195-205
        • Shade J.P.
        • Van Groenigen WB.
        Structural organization of the human cerebral cortex. I. Maturation of the middle frontal gyrus.
        Acta Anat. 1961; 47: 74-111
        • Yakovlev P.I.
        • Lecours A.R.
        The myelogenetic cycle of regional maturation of the brain.
        in: Minkowski A. Regional development of the brain in early life. Blackwell, Oxford, England1967: 3-70
        • Brody B.A.
        • Kinney H.C.
        • Kloman A.S.
        • Gilles F.H.
        Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination.
        J Neuropahtol Exp Neurol. 1987; 46: 283-301
        • Huttenlocher P.R.
        • Dabholkar A.S.
        Regional differences in synaptogenesis in human cerebral cortex.
        J Comp Neurol. 1997; 387: 167-178
        • Gogtay N.
        • Giedd J.N.
        • Lusk L.
        • Hayashi K.M.
        • Greenstein D.
        • Vaituzis A.C.
        • et al.
        Dynamic mapping of human cortical development during childhood through early adulthood.
        Proc Natl Acad Sci USA. 2004; 101: 8174-8179
        • Theodore W.H.
        Antiepileptic drugs and cerebral glucose metabolism.
        Epilepsia. 1988; 29: S48-S55