Advertisement

Fibroblast screening for chaperone therapy in β-galactosidosis

      Abstract

      We performed screening of β-galactosidase-deficient fibroblasts for possible chemical chaperone therapy using N-octyl-4-epi-β-valienamine (NOEV) in patients with GM1-gangliosidosis and Morquio B disease (β-galactosidosis). Fibroblasts were cultured with NOEV for 4 days and β-galactosidase activity was measured. Mutation analysis was performed simultaneously. Two separate criteria were set for evaluation of the chaperone effect: a relative increase of enzyme activity (more than 3-fold), and an increase up to more than 10% normal enzyme activity. Among the 50 fibroblast strains tested, more than 3-fold increase was achieved in 17 cell strains (34%), and more than 10% normal activity in 10 (20%). Both criteria were satisfied in 6 (12%), and either of them in 21 (42%). Juvenile GM1-gangliosidosis was most responsive, and then infantile GM1-gangliosidosis. This enhancement was mutation-specific. We estimate that the NOEV chaperone therapy will be effective in 20–40% of the patients, mainly in juvenile and infantile GM1-gangliosidosis patients. A molecular design may produce mutation-specific chaperone compounds for the other disease phenotypes. This cellular screening will be useful for identification of human patients with β-galactosidase deficiency for chaperone therapy to be started in the near future.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Suzuki Y.
        • Oshima A.
        • Nanba E.
        β-Galactosidase deficiency (β-galactosidosis): GM1-gangliosidosis and Morquio B disease.
        in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. Childs B. Kinzler K.W. Vogelstein B. The metabolic and molecular bases of inherited disease. 8th ed. McGraw-Hill, New York2001: 3775-3809
        • O’Brien J.S.
        • Storb R.
        • Raff R.F.
        • Harding J.
        • Appelbaum F.
        • Morimoto S.
        • et al.
        Bone marrow transplantation in canine GM1 gangliosidosis.
        Clin Genet. 1990; 38: 274-280
        • Tylki Szymanska A.
        • Maciejko D.
        • Kidawa M.
        • Jablonska Budaj U.
        • Czartoryska B.
        Amniotic tissue transplantation as a trial of treatment in some lysosomal storage diseases.
        J Inherited Metab Dis. 1985; 8: 101-104
        • Okumiya T.
        • Ishii S.
        • Takenaka T.
        • Kase R.
        • Kamei S.
        • Sakuraba H.
        • et al.
        Galactose stabilizes various missense mutants of α-galactosidase in Fabry disease.
        Biochem Biophys Res Commun. 1995; 214: 1219-1224
        • Fan J.Q.
        • Ishii S.
        • Asano N.
        • Suzuki Y.
        Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor.
        Nat Med. 1999; 5: 112-115
        • Ishii S.
        • Kase R.
        • Sakuraba H.
        • Taya C.
        • Yonekawa H.
        • Okumiya T.
        • et al.
        α-Galactosidase transgenic mouse: heterogeneous gene expression and posttranslational glycosylation in tissues.
        Glycoconj J. 1998; 15: 591-594
        • Okumiya T.
        • Ishii S.
        • Kase R.
        • Kamei S.
        • Sakuraba H.
        • Suzuki Y.
        α-Galactosidase gene mutations in Fabry disease: heterogeneous expressions of mutant enzyme proteins.
        Hum Genet. 1995; 95: 557-561
        • Ishii S.
        • Kase R.
        • Okumiya T.
        • Sakuraba H.
        • Suzuki Y.
        Aggregation of the inactive form of human α-galactosidase in the endoplasmic reticulum.
        Biochem Bophys Res Commun. 1996; 220: 812-815
        • Matsuda J.
        • Suzuki O.
        • Oshima A.
        • Yamamoto Y.
        • Noguchi A.
        • Takimoto K.
        • et al.
        Chemical chaperone therapy for brain pathology in GM1-gangliosidosis.
        Proc Natl Acad Sci USA. 2003; 100: 15912-15917
        • Ogawa S.
        • Kobayashi Matsunaga Y.
        • Suzuki Y.
        Chemical modification of the β-glucocerebrosidase inhibitor N-octyl-β-valienamine: synthesis and biological evaluation of 4-epimeric and 4-O-(β-d-galactopyransyl) derivatives.
        Bioorg Med Chem. 2002; 10: 1967-1972
        • Sakuraba
        • Aoyagi T.
        • Suzuki Y.
        Galactosialidosis (β-galactosidase-neuraminidase deficiency): a possible role of serine-thiol proteases in the degradation of β-galactosidase molecules.
        Clin Chim Acta. 1982; 125: 275-282
        • Tominaga L.
        • Ogawa Y.
        • Taniguchi M.
        • Ohno K.
        • Matuda J.
        • Oshima A.
        • et al.
        Galactonojirimycin derivatives restore mutant human β-galactosidase activities expressed in fibroblasts from enzyme-deficient knockout mouse.
        Brain Dev. 2001; 23: 284-287
        • Zhang H.
        • Nanba E.
        • Yamamoto T.
        • Ninomiya H.
        • Ohno K.
        • Mizuguchi M.
        • et al.
        Mutational analysis of TSC1 and TSC2 genes in Japanese patients with tuberous sclerosis complex.
        J Hum Genet. 1999; 44: 391-396
        • Lin H.
        • Sugimoto Y.
        • Ohsaki Y.
        • Ninomiya H.
        • Oka A.
        • Taniguchi M.
        • et al.
        N-Octyl-β-valienamine up-regulates activity of F213I mutant β-glucosidase in cultured cells: a potential chemical chaperone therapy for Gaucher disease.
        Biochim Biophys Acta. 2004; 1689: 219-228
        • Zhang S.
        • Bagshaw R.
        • Hilson W.
        • Oho Y.
        • Hinek A.
        • Clarke J.T.
        • et al.
        Characterization of β-galactosidase mutations Asp332 → Asn and Arg148 → Ser, and a polymorphism, Ser532 → Gly, in a case of GM1 gangliosidosis.
        Biochem J. 2000; 348: 621-632
        • Frustaci A.
        • Chimenti C.
        • Ricci R.
        • Natale L.
        • Russo M.A.
        • Pieroni M.
        • et al.
        Improvement in cardiac function in the cardiac variant of Fabry’s disease with galactose-infusion therapy.
        N Engl J Med. 2001; 345: 25-32
        • Yoshida K.
        • Oshima A.
        • Shimmoto M.
        • Fukuhara Y.
        • Sakuraba H.
        • Yanagisawa N.
        • et al.
        Human β-galactosidase gene mutations in GM1-gangliosidosis: a common mutation among Japanese adult/chronic cases.
        Am J Hum Genet. 1991; 49: 435-442
        • Oshima A.
        • Yoshida K.
        • Shimmoto M.
        • Fukuhara Y.
        • Sakuraba H.
        • Suzuki Y.
        Human β-galactosidase gene mutations in Morquio B disease.
        Am J Hum Genet. 1991; 49: 1091-1093
        • Mosna G.
        • Fattore S.
        • Tubiello G.
        • Brocca S.
        • Trubia M.
        • Gianazaa E.
        • et al.
        A homozygous missense arginine to histidine substitution at position 482 of the β-galactosidase in an Italian infantile GM1-ganglosidosis patient.
        Hum Genet. 1992; 90: 247-250
        • Heitner R.
        • Elstein D.
        • Aerts J.
        • Weely S.
        • Zimran A.
        Low-dose N-butyldeoxynojirimycin (OGT 918) for type I Gaucher disease.
        Blood Cells Mol Dis. 2002; 28: 127-133
        • Kasperzyk J.L.
        • d’Azzo A.
        • Platt F.M.
        • Alroy J.
        • Seyfried T.N.
        Substrate reduction reduces gangliosides in postnatal cerebrum–brainstem and cerebellum in GM1 gangliosidosis mice.
        J Lipid Res. 2005; 46: 744-751