Advertisement

MeCP2 expression and function during brain development: implications for Rett syndrome's pathogenesis and clinical evolution

      Abstract

      Most cases of Rett syndrome (RTT) are associated with mutations of the transcriptional regulator MeCP2. On the basis of molecular structure, ontogeny, and subcellular and regional distribution, MeCP2 appears to be a link between synaptic activity and neuronal transcription. Integrating data on MeCP2 neurobiology, RTT neurobiology, MeCP2 mutational patterns in RTT and other disorders, histone profiles of relevance to RTT, and genotype–phenotype correlations in RTT, we update here our synaptic hypothesis of RTT. We postulate that MeCP2 dysfunction leads to abnormal brain development through maladjustment of neuronal gene expression to synaptic and other extra-cellular signals, mainly during the critical period of synaptic maturation. RTT phenotype will develop, only if severe MeCP2 dysfunction is present during early neuronal differentiation. Two models are proposed for explaining general and regional neuronal abnormalities in RTT and the phenotypical outcome of MeCP2 dysfunction, respectively.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Amir R.E.
        • Van den Veyver I.B.
        • Wan M.
        • Tran C.Q.
        • Francke U.
        • Zoghbi H.Y.
        Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.
        Nat Genet. 1999; 23: 185-188
        • Kriaucionis S.
        • Bird A.
        DNA methylation and Rett syndrome.
        Hum Mol Genet. 2003; 12: R221-R227
        • Christodoulou J.
        • Weaving L.S.
        MECP2 and beyond: phenotype-genotype correlations in Rett syndrome.
        J Child Neurol. 2003; 18: 669-674
        • Kerr A.
        • Engerström I.W.
        The clinical background to the Rett disorder.
        in: Kerr A. Engerström I.W. Rett disorder and the developing brain. Oxford University Press, Oxford2001: 1-26
        • Miltenberger-Miltenyi G.
        • Laccone F.
        Mutations and polymorphisms in the human methyl CpG-binding protein MECP2.
        Hum Mutat. 2003; 22: 107-115
        • Mnatzakanian G.N.
        • Lohi H.
        • Munteanu I.
        • Alfred S.E.
        • Yamada T.
        • MacLeod P.J.
        • et al.
        A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome.
        Nat Genet. 2004; 36: 339-341
        • Kriaucionis S.
        • Bird A.
        The major form of MeCP2 has a novel N-terminus generated by alternative splicing.
        Nucleic Acids Res. 2004; 32: 1818-1823
        • Rosenblum K.
        • Futter M.
        • Voss K.
        • Erent M.
        • Skehel P.A.
        • French P.
        • et al.
        The role of extracellular regulated kinases I/II in late-phase long-term potentiation.
        J Neurosci. 2002; 22: 5432-5441
        • Sweatt J.D.
        The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory.
        J Neurochem. 2001; 76: 1-10
        • Johnston M.V.
        • Jeon O.H.
        • Pevsner J.
        • Blue M.E.
        • Naidu S.
        Neurobiology of Rett syndrome: a genetic disorder of synapse development.
        Brain Dev. 2001; 23: S206-S213
        • Akbarian S.
        • Chen R.Z.
        • Gribnau J.
        • Rasmussen T.P.
        • Fong H.
        • Jaenisch R.
        • et al.
        Expression pattern of the Rett syndrome gene MeCP2 in primate prefrontal cortex.
        Neurobiol Dis. 2001; 8: 784-791
        • Shahbazian M.D.
        • Antalffy B.
        • Armstrong D.L.
        • Zoghbi H.Y.
        Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation.
        Hum Mol Genet. 2002; 11: 115-124
        • Aber K.M.
        • Nori P.
        • MacDonald S.
        • Bibat G.
        • Jarrar M.H.
        • Kaufmann W.E.
        Methyl-CpG-binding protein 2 is localized in the postsynaptic compartment: an immunochemical study of subcellular fractions.
        Neuroscience. 2003; 116: 77-80
        • Crino P.
        • Khodakhah K.
        • Becker K.
        • Ginsberg S.
        • Hemby S.
        • Eberwine J.
        Presence and phosphorylation of transcription factors in developing dendrites.
        Proc Natl Acad Sci USA. 1998; 95: 2313-2318
        • Martinowich K.
        • Hattori D.
        • Wu H.
        • Fouse S.
        • He F.
        • Hu Y.
        • et al.
        DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation.
        Science. 2003; 302: 890-893
        • Chen W.G.
        • Chang Q.
        • Lin Y.
        • Meissner A.
        • West A.E.
        • Griffith E.C.
        • et al.
        Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2.
        Science. 2003; 302: 885-889
        • West A.E.
        • Chen W.G.
        • Dalva M.B.
        • Dolmetsch R.E.
        • Kornhauser J.M.
        • Shaywitz A.J.
        • et al.
        Calcium regulation of neuronal gene expression.
        Proc Natl Acad Sci USA. 2001; 98: 11024-11031
        • Jarrar M.H.
        • Danko C.G.
        • Reddy S.
        • Lee Y.M.
        • Bibat G.
        • Kaufmann W.E.
        MeCP2 expression in human cerebral cortex and lymphoid cells: immunochemical characterization of a novel higher molecular weight form.
        J Child Neurol. 2003; 18: 675-682
        • Jung B.P.
        • Jugloff D.G.
        • Zhang G.
        • Logan R.
        • Brown S.
        • Eubanks J.H.
        The expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in the developing rat brain and in cultured cells.
        J Neurobiol. 2003; 55: 86-96
        • Sarnat H.B.
        • Nochlin D.
        • Born D.E.
        Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in early human fetal nervous system.
        Brain Dev. 1998; 20: 88-94
        • Kaufmann W.E.
        • Yamagata K.
        • Andreasson K.I.
        • Worley P.F.
        Rapid response genes as markers of cellular signaling during cortical histogenesis: their potential in understanding mental retardation.
        Int J Dev Neurosci. 1994; 12: 263-271
        • LaSalle J.M.
        • Goldstine J.
        • Balmer D.
        • Greco C.M.
        Quantitative localization of heterogeneous methyl-CpG-binding protein 2 (MeCP2) expression phenotypes in normal and Rett syndrome brain by laser scanning cytometry.
        Hum Mol Genet. 2001; 10: 1729-1740
        • Cassel S.
        • Revel M.O.
        • Kelche C.
        • Zwiller J.
        Expression of the methyl-CpG-binding protein MeCP2 in rat brain. An ontogenetic study.
        Neurobiol Dis. 2004; 15: 206-211
        • Mullaney B.C.
        • Johnston M.V.
        • Blue M.E.
        Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain.
        Neuroscience. 2004; 123: 939-949
        • Kaufmann W.E.
        Cortical histogenesis.
        in: Aminoff M.J. Daroff R.B. Encyclopedia of the neurological sciences. vol. 1. Academic Press, San Diego2003: 777-784
        • Balmer D.
        • Goldstine J.
        • Rao Y.M.
        • LaSalle J.M.
        Elevated methyl-CpG-binding protein 2 expression is acquired during postnatal human brain development and is correlated with alternative polyadenylation.
        J Mol Med. 2003; 81: 61-68
        • Reichwald K.
        • Thiesen J.
        • Wiehe T.
        • Weitzel J.
        • Poustka W.A.
        • Rosenthal A.
        • et al.
        Comparative sequence analysis of the MECP2-locus in human and mouse reveals new transcribed regions.
        Mamm Genome. 2000; 11: 182-190
        • Cohen D.R.
        • Matarazzo V.
        • Palmer A.M.
        • Tu Y.
        • Jeon O.H.
        • Pevsner J.
        • et al.
        Expression of MeCP2 in olfactory receptor neurons is developmentally regulated and occurs before synaptogenesis.
        Mol Cell Neurosci. 2003; 22: 417-429
        • Francis J.
        • Jung B.
        • Zhang G.
        • Cheng J.
        • Ho W.
        • Burnham W.M.
        • et al.
        Kindling induces the mRNA expression of methyl DNA-binding factors in the adult rat hippocampus.
        Neuroscience. 2002; 113: 79-87
        • Wade P.A.
        Methyl CpG-binding proteins and transcriptional repression.
        Bioessays. 2001; 23: 1131-1137
        • Watson P.
        • Black G.
        • Ramsden S.
        • Barrow M.
        • Super M.
        • Kerr B.
        • et al.
        Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein.
        J Med Genet. 2001; 38: 224-228
        • Chen R.Z.
        • Akbarian S.
        • Tudor M.
        • Jaenisch R.
        Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice.
        Nat Genet. 2001; 27: 327-331
        • Guy J.
        • Hendrich B.
        • Holmes M.
        • Martin J.E.
        • Bird A.
        A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome.
        Nat Genet. 2001; 27: 322-326
        • LaSalle J.M.
        Paradoxical role of methyl-CpG-binding protein 2 in Rett syndrome.
        Curr Top Dev Biol. 2004; 59: 61-86
        • Armstrong D.D.
        • Kinney H.C.
        The neuropathology of the Rett disorder.
        in: Kerr A. Engerström I.W. Rett disorder and the developing brain. Oxford University Press, Oxford2001: 57-84
        • Kaufmann W.E.
        Cortical development in Rett Syndrome: molecular, neurochemical, and anatomical aspects.
        in: Kerr A. Engerström I.W. Rett disorder and the developing brain. Oxford University Press, Oxford2001: 85-106
        • Colantuoni C.
        • Jeon O-H.
        • Hyder K.
        • Chenchik A.
        • Khimani A.H.
        • Narayanan V.
        • et al.
        Gene expression profiling in postmortem Rett syndrome brain: differential gene expression and patient classification.
        Neurobiol Dis. 2001; 8: 847-865
        • Kaufmann W.E.
        • Moser H.W.
        Dendritic anomalies in disorders associated with mental retardation.
        Cereb Cortex. 2000; 10: 981-991
        • Blue M.E.
        • Naidu S.
        • Johnston M.V.
        Development of amino acid receptors in frontal cortex from girls with Rett syndrome.
        Ann Neurol. 1999; 45: 541-545
        • Webster M.J.
        • Weickert C.S.
        • Herman M.M.
        • Kleinman J.E.
        BDNF mRNA expression during postnatal development, maturation and aging of the human prefrontal cortex.
        Dev Brain Res. 2002; 139: 139-150
        • McAllister A.K.
        Neurotrophins and cortical development.
        Results Probl Cell Differ. 2002; 39: 89-112
        • Richerson G.B.
        • Bekkers J.M.
        Learning to take a deep breath—with BDNF.
        Nat Med. 2004; 10: 25-26
        • Pescucci C.
        • Meloni I.
        • Bruttini M.
        • Ariani F.
        • Longo I.
        • Mari F.
        • et al.
        Chromosome 2 deletion encompassing the MAP2 gene in a patient with autism and Rett-like features.
        Clin Genet. 2003; 64: 497-501
        • Tudor M.
        • Akbarian S.
        • Chen R.Z.
        • Jaenisch R.
        Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain.
        Proc Natl Acad Sci USA. 2002; 99: 15536-15541
        • Ramakers G.J.
        Rho proteins, mental retardation and the cellular basis of cognition.
        Trends Neurosci. 2002; 25: 191-199
        • Traynor J.
        • Agarwal P.
        • Lazzeroni L.
        • Francke U.
        Gene expression patterns vary in clonal cell cultures from Rett syndrome females with eight different MECP2 mutations.
        BMC Med Genet. 2002; 3: 12
        • Ballestar E.
        • Yusufzai T.M.
        • Wolffe A.P.
        Effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA.
        Biochemistry. 2000; 39: 7100-7106
        • Kudo S.
        • Nomura Y.
        • Segawa M.
        • Fujita N.
        • Nakao M.
        • Schanen C.
        • et al.
        Heterogeneity in residual function of MeCP2 carrying missense mutations in the methyl CpG binding domain.
        J Med Genet. 2003; 40: 487-493
        • Leonard H.
        • Colvin L.
        • Christodoulou J.
        • Schiavello T.
        • Williamson S.
        • Davis M.
        • et al.
        Patients with the R133C mutation: is their phenotype different from patients with Rett syndrome with other mutations?.
        J Med Genet. 2003; 40: e52
        • Weaving L.S.
        • Williamson S.L.
        • Bennetts B.
        • Davis M.
        • Ellaway C.J.
        • Leonard H.
        • et al.
        Effects of MECP2 mutation type, location and X-inactivation in modulating Rett syndrome phenotype.
        Am J Med Genet. 2003; 118A: 103-114
        • Schanen C.
        • Houwink E.J.
        • Dorrani N.
        • Lane J.
        • Everett R.
        • Feng A.
        • et al.
        Phenotypic manifestations of MECP2 mutations in classical and atypical Rett syndrome.
        Am J Med Genet. 2004; 126A: 129-140
        • Shahbazian M.D.
        • Sun Y.
        • Zoghbi H.Y.
        Balanced X chromosome inactivation patterns in the Rett syndrome brain.
        Am J Med Genet. 2002; 111: 164-168
        • Wan M.
        • Zhao K.
        • Lee S.S.
        • Francke U.
        MECP2 truncating mutations cause histone H4 hyperacetylation in Rett syndrome.
        Hum Mol Genet. 2001; 10: 1085-1092
        • Balmer D.
        • Arredondo J.
        • Samaco R.C.
        • LaSalle J.M.
        MECP2 mutations in Rett syndrome adversely affect lymphocyte growth, but do not affect imprinted gene expression in blood or brain.
        J Hum Genet. 2002; 110: 545-552
      1. Kaufmann WE, Jarrar MH, Wang JS, Lee Y-JM, Reddy S, Bibat G, et al. Histone modifications in Rett syndrome lymphocytes: a preliminary evaluation. Brain Dev 2005;27:331–339.

        • Lorincz M.C.
        • Schubeler D.
        • Groudine M.
        Methylation-mediated proviral silencing is associated with MeCP2 recruitment and localized histone H3 deacetylation.
        Mol Cell Biol. 2001; 21: 7913-7922
        • Shahbazian M.
        • Young J.
        • Yuva-Paylor L.
        • Spencer C.
        • Antalffy B.
        • Noebels J.
        • et al.
        Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3.
        Neuron. 2002; 35: 243-254
        • Tsankova N.M.
        • Kumar A.
        • Nestler E.J.
        Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures.
        J Neurosci. 2004; 24: 5603-5610
        • Crosio C.
        • Heitz E.
        • Allis C.D.
        • Borrelli E.
        • Sassone-Corsi P.
        Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons.
        J Cell Sci. 2003; 116: 4905-4914
        • Vourc'h P.
        • Bienvenu T.
        • Beldjord C.
        • Chelly J.
        • Barthelemy C.
        • Muh J.P.
        • et al.
        No mutations in the coding region of the Rett syndrome gene MECP2 in 59 autistic patients.
        Eur J Hum Genet. 2001; 9: 556-558
        • Beyer K.S.
        • Blasi F.
        • Bacchelli E.
        • Klauck S.M.
        • Maestrini E.
        • Poustka A.
        Mutation analysis of the coding sequence of the MECP2 gene in infantile autism. International molecular genetic study of autism consortium (IMGSAC).
        Hum Genet. 2002; 111: 305-309
        • Lobo-Menendez F.
        • Sossey-Alaoui K.
        • Bell J.M.
        • Copeland-Yates S.A.
        • Plank S.M.
        • Sanford S.O.
        • et al.
        Absence of MeCP2 mutations in patients from the South Carolina autism project.
        Am J Med Genet. 2003; 117B: 97-101
        • Shibayama A.
        • Cook Jr, E.H.
        • Feng J.
        • Glanzmann C.
        • Yan J.
        • Craddock N.
        • et al.
        MECP2 structural and 3′-UTR variants in schizophrenia, autism and other psychiatric diseases: a possible association with autism.
        Am J Med Genet. 2004; 128B: 50-53
        • Samaco R.C.
        • Nagarajan R.P.
        • Braunschweig D.
        • LaSalle J.M.
        Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders.
        Hum Mol Genet. 2004; 13: 629-639
        • Zappella M.
        • Meloni I.
        • Longo I.
        • Canitano R.
        • Hayek G.
        • Rosaia L.
        • et al.
        Study of MECP2 gene in Rett syndrome variants and autistic girls.
        Am J Med Genet. 2003; 119B: 102-107
        • Carro S.
        • Bergo A.
        • Mengoni M.
        • Bachi A.
        • Badaracco G.
        • Kilstrup-Nielsen C.
        • et al.
        A novel protein, Xenopus p20, influences the stability of MeCP2 through direct interaction.
        J Biol Chem. 2004; 279: 25623-25631
        • Koenderink M.J.
        • Uylings H.B.
        Postnatal maturation of layer V pyramidal neurons in the human prefrontal cortex. A quantitative Golgi analysis.
        Brain Res. 1995; 678: 233-243
        • Adams R.D.
        • Victor M.
        Normal development and deviations in development of the nervous system.
        in: Adams R.D. Victor M. Principles of neurology. McGraw-Hill, New York1981: 387-417
        • Johnston M.V.
        Brain plasticity in paediatric neurology.
        Eur J Paediatr Neurol. 2003; 7: 105-113