Advertisement

Functional MRI in attention-deficit hyperactivity disorder: Evidence for hypofrontality

      Abstract

      Using event-related functional magnetic resonance imaging to study the Stroop effect on both behavioral and brain activation of ADHD children off or on methylphenidate (MPH). Nine ADHD boys (aged 9.8–14.5 years) and 9 age-matched normal controls were included. A Stroop-like paradigm was used. AFNI (Analysis of Functional NeuroImaging) and its Deconvolution Analysis were used in a descriptive comparison between ADHD and control groups. (1) Both behavioral reaction time and brain activation showed Stroop effect in controls but neither was found in ADHD children off MPH. When MPH was administered, the Stroop effect tended to appear. (2) The activation volume (AV) of prefrontal cortex (PFC) in both the neutral (NC) and interference conditions (IC) in ADHD children off MPH was smaller than in controls. AV of anterior cingulate cortex in the IC in ADHD children off MPH was smaller than that in controls, but was similar in the NC to that in controls. AV of the basal ganglia, insula and cerebellum was also smaller in the IC, but was larger in the NC for ADHD children off MPH compared with controls. These findings are consistent with prior findings of hypofrontality in ADHD children and implicate a compensatory network including basal ganglia, insula and cerebellum for relative lower cognitive load tasks.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bridge Denckla M.
        ADHD: topic update.
        Brain Dev. 2003; 25: 383-389
        • Houghton S.
        • Douglas G.
        • West J.
        • Whiting K.
        • Wall M.
        • Langsford S.
        • et al.
        Differential patterns of executive function in children with attention-deficit hyperactivity disorder according to gender and subtype.
        J Child Neurol. 1999; 14: 801-805
        • Seidman L.J.
        • Biederman J.
        • Faraone S.V.
        • Weber W.
        • Ouellette C.
        Toward defining a neuropsychology of attention deficit-hyperactivity disorder: performance of children and adolescents from a large clinically referred sample.
        J Consult Clin Psychol. 1997; 65: 150-160
        • Casey B.J.
        • Castellanos F.X.
        • Giedd J.N.
        • Marsh W.L.
        • Hamburger S.D.
        • Schubert A.B.
        • et al.
        Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder.
        J Am Acad Child Adolesc Psychiatry. 1997; 36: 374-383
        • Carte E.T.
        • Nigg J.T.
        • Hinshaw S.P.
        Neuropsychological functioning, motor speed, and language processing in boys with and without ADHD.
        J Abnorm Child Psychol. 1996; 24: 481-498
        • Rubia K.
        • Overmeyer S.
        • Taylor E.
        • Brammer M.
        • Williams S.C.
        • Simmons A.
        • et al.
        Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI.
        Am J Psychiatry. 1999; 156: 891-896
        • Aylward E.H.
        • Reiss A.L.
        • Reader M.J.
        • Singer H.S.
        • Brown J.E.
        • Denckla M.B.
        Basal ganglia volumes in children with attention-deficit hyperactivity disorder.
        J Child Neurol. 1996; 11: 112-115
        • Castellanos F.X.
        • Giedd J.N.
        • Marsh W.L.
        • Hamburger S.D.
        • Vaituzis A.C.
        • Dickstein D.P.
        • et al.
        Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder.
        Arch Gen Psychiatry. 1996; 53: 607-616
        • Castellanos F.X.
        • Giedd J.N.
        • Hamburger S.D.
        • Marsh W.L.
        • Rapoport J.L.
        Brain morphology in Tourette's syndrome: the influence of comorbid attention-deficit/hyperactivity disorder.
        Neurology. 1996; 47: 1581-1583
        • Filipek P.A.
        • Semrud-Clikeman M.
        • Steingard R.J.
        • Renshaw P.F.
        • Kennedy D.N.
        • Biederman J.
        Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls.
        Neurology. 1997; 48: 589-601
        • Hynd G.W.
        • Semrud-Clikeman M.
        • Lorys A.R.
        • Novey E.S.
        • Eliopulos D.
        Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity.
        Arch Neurol. 1990; 47: 919-926
        • Mataro M.
        • Garcia-Sanchez C.
        • Junque C.
        • Estevez-Gonzalez A.
        • Pujol J.
        Magnetic resonance imaging measurement of the caudate nucleus in adolescents with attention-deficit hyperactivity disorder and its relationship with neuropsychological and behavioral measures.
        Arch Neurol. 1997; 54: 963-968
        • Peterson B.S.
        • Leckman J.F.
        • Tucker D.
        • Scahill L.
        • Staib L.
        • Zhang H.
        • et al.
        Preliminary findings of antistreptococcal antibody titers and basal ganglia volumes in tic, obsessive–compulsive, and attention deficit/hyperactivity disorders.
        Arch Gen Psychiatry. 2000; 57: 364-372
        • Semrud-Clikeman M.
        • Steingard R.J.
        • Filipek P.
        • Biederman J.
        • Bekken K.
        • Renshaw P.F.
        Using MRI to examine brain–behavior relationships in males with attention deficit disorder with hyperactivity.
        J Am Acad Child Adolesc Psychiatry. 2000; 39: 477-484
        • Heilman K.M.
        • Voeller K.K.
        • Nadeau S.E.
        A possible pathophysiologic substrate of attention deficit hyperactivity disorder.
        J Child Neurol. 1991; 6: S76-S81
        • Krause K.H.
        • Dresel S.H.
        • Krause J.
        • Kung H.F.
        • Tatsch K.
        Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography.
        Neurosci Lett. 2000; 285: 107-110
        • Zametkin A.J.
        • Nordahl T.E.
        • Gross M.
        • King A.C.
        • Semple W.E.
        • Rumsey J.
        • et al.
        Cerebral glucose metabolism in adults with hyperactivity of childhood onset.
        N Engl J Med. 1990; 323: 1361-1366
        • Vaidya C.J.
        • Austin G.
        • Kirkorian G.
        • Ridlehuber H.W.
        • Desmond J.E.
        • Glover G.H.
        • et al.
        Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study.
        Proc Natl Acad Sci USA. 1998; 95: 14494-14499
        • Bush G.
        • Frazier J.A.
        • Rauch S.L.
        • Seidman L.J.
        • Whalen P.J.
        • Jenike M.A.
        • et al.
        Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting stroop.
        Biol Psychiatry. 1999; 45: 1542-1552
        • Teicher M.H.
        • Anderson C.M.
        • Polcari A.
        • Glod C.A.
        • Maas L.C.
        • Renshaw P.F.
        Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry.
        Nat Med. 2000; 6: 470-473
        • Berquin P.C.
        • Giedd J.N.
        • Jacobsen L.K.
        • Hamburger S.D.
        • Krain A.L.
        • Rapoport J.L.
        • et al.
        Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study.
        Neurology. 1998; 50: 1087-1093
        • Mostofsky S.H.
        • Reiss A.L.
        • Lockhart P.
        • Denckla M.B.
        Evaluation of cerebellar size in attention-deficit hyperactivity disorder.
        J Child Neurol. 1998; 13: 434-439
        • Schmahmann J.D.
        From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing.
        Hum Brain Mapp. 1996; 4: 174-198
        • Townsend J.
        • Courchesne E.
        • Covington J.
        • Westerfield M.
        • Harris N.S.
        • Lyden P.
        • et al.
        Spatial attention deficits in patients with acquired or developmental cerebellar abnormality.
        J Neurosci. 1999; 19: 5632-5643
        • Le T.H.
        • Pardo J.V.
        • Hu X.
        4 T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions.
        J Neurophysiol. 1998; 79: 1535-1548
        • Anderson C.M.
        • Polcari A.
        • Lowen S.B.
        • Renshaw P.F.
        • Teicher M.H.
        Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD.
        Am J Psychiatry. 2002; 159: 1322-1328
        • Garavan H.
        • Ross T.J.
        • Stein E.A.
        Right hemispheric dominance of inhibitory control: an event-related functional MRI study.
        Proc Natl Acad Sci USA. 1999; 96: 8301-8306
        • Barkley R.A.
        Attention-deficit hyperactivity disorder: a clinical workbook.
        2nd ed. Guiford, New York1988
        • Yang L.
        • Wang Y.F.
        • Qian Q.J.
        • Gu B.M.
        Primary exploration of the clinical subtypes of attention deficit hyperactivity disorder in Chinese children.
        Chin J Psychiatry. 2001; 34: 204-207
        • Gong Y.X.
        • Cai T.S.
        Manual of Chinese revised wechsler intelligence scale for children.
        Hunan Atlas Publishing House, Changsha1993
        • Cox R.W.
        AFNI software for analysis and visualization of functional magnetic resonance neuroimages.
        Comput Biomed Res. 1996; 29: 162-173
        • Talairach J.
        • Tournoux P.
        A coplanar stereotactic atlas of the human brain.
        Stuttgart, Thieme1988
        • Perlstein W.M.
        • Carter C.S.
        • Barch D.M.
        • Baird J.W.
        The Stroop task and attention deficits in schizophrenia: a critical evaluation of card and single-trial Stroop methodologies.
        Neuropsychology. 1998; 12: 414-425
        • Unoki K.
        • Kasuga T.
        • Matsushima E.
        • Ohta K.
        Attentional processing of emotional information in obsessive–compulsive disorder.
        Psychiatry Clin Neurosci. 1999; 53: 635-642
        • Carter C.S.
        • Krener P.
        • Chaderjian M.
        • Northcutt C.
        • Wolfe V.
        Abnormal processing of irrelevant information in attention deficit hyperactivity disorder.
        Psychiatry Res. 1995; 56: 59-70
        • Laurent A.
        • Biloa-Tang M.
        • Bougerol T.
        • Duly D.
        • Anchisi A.M.
        • Bosson J.L.
        • et al.
        Executive/attentional performance and measures of schizotypy in patients with schizophrenia and in their nonpsychotic first-degree relatives.
        Schizophr Res. 2000; 46: 269-283
        • Ernst M.
        • Zametkin A.J.
        • Matochik J.A.
        • Jons P.H.
        • Cohen R.M.
        DOPA decarboxylase activity in attention deficit hyperactivity disorder adults: A [fluorine-18] fluorodopa positron emission tomographic study.
        J Neurosci. 1998; 18: 5901-5907
        • Adachi T.
        • Koeda T.
        • Hirabayashi S.
        • Maeoka Y.
        • Shiota M.
        • Wright E.C.
        • et al.
        The metaphor and sarcasm scenario test: a new instrument to help differentiate high functioning pervasive developmental disorder from attention deficit/hyper activity disorder.
        Brain Dev. 2004; 26: 301-306