Original article| Volume 27, ISSUE 8, P558-563, December 2005

Synchronous occurrence of EEG bursts and heart rate acceleration in preterm infants


      Continuous and simultaneous registration of electroencephalogram (EEG) and heart rate (HR) pattern in preterm infants can give information about the functioning of central nervous system and the integrity of the autonomic nervous system. The developmental and behavioural state determine the pattern of EEG activity. A discontinuous EEG activity also known as ‘Tracé alternant’ (TA) in preterm infants is accompanied by a low heart rate variability (HRV). It was found that electroencephalographic bursts of slow waves during TA are coupled with an acceleration of the HR. In this study, this synchronous behaviour of EEG bursts and HR is described for the first time in a group of preterm infants with a mean conceptional age (CA) of 36 weeks.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Maynard D.
        • Prior P.F.
        • Scott D.F.
        Device for continuous monitoring of cerebral activity in resuscitated patients.
        Br Med J. 1969; 29: 545-546
        • Verma U.L.
        • Archbald F.
        • Tejani N.A.
        • Handwerker S.M.
        Cerebral function monitor in the neonate I: Normal patterns.
        Dev Med Child Neurol. 1984; 26: 154-161
        • Thornberg E.
        • Thiringer K.
        Normal pattern of the cerebral function monitor trace in term and preterm neonates.
        Acta Paediatr Scand. 1990; 79: 20-25
        • Hellstrom-Westas L.
        • Rosen I.
        • Svenningsen N.W.
        Cerebral function monitoring during the first week of life in extremely small low birthweight (ESLBW) infants.
        Neuropediatrics. 1991; 22: 27-32
        • Al Naqeeb N.
        • Edwards A.D.
        • Cowan F.M.
        • Azzopardi D.
        Assessment of neonatal encephalopathy by amplitude-integrated EEG.
        Pediatrics. 1999; 103: 1263-1271
        • Klebermass K.
        • Kuhle S.
        • Kohlhauser-Vollmuth C.
        • Pollak A.
        • Weninger M.
        Evaluation of the cerebral function monitor as a tool for neurophysiological surveillance in neonatal intensive care patients.
        Childs Nerv Syst. 2001; 17: 544-550
        • Hellstrom-Westas L.
        • Rosen I.
        Amplitude-integrated electroencephalogram in newborn infants for clinical and research purposes.
        Acta Paediatr. 2002; 91: 1028-1030
        • Lamblin M.D.
        • Andre M.
        • Challamel M.J.
        • Curzi-Dascalova L.
        • d'Allest A.M.
        • De Giovanni E.
        • et al.
        Electroencephalography of the premature and term newborn Maturational aspects and glossary.
        Neurophysiol Clin. 1999; 29: 123-219
        • Lombroso C.T.
        Neonatal polygraphy in full-term and premature infants: a review of normal and abnormal findings.
        J Clin Neurophysiol. 1985; 2: 105-155
        • Clancy R.R.
        Electroencephalogram in the premature and full-term infant.
        in: Polin R.A. Fox W. Fetal and neonatal physiology. 2nd ed. Saunders, Philadelphia1998: 2147-2165 (Chapter 193)
        • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology
        Heart rate variability: standards of measurement, physiological interpretation and clincal use.
        Circulation. 1996; 93: 1043-4065
        • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology
        Heart rate variability: standards of measurement, physiological interpretation and clincal use.
        Eur Heart J. 1996; 17: 354-381
        • Rosenstock E.G.
        • Cassuto Y.
        • Zmora E.
        Heart rate variability in the neonate and infant: analytical methods, physiological and clinical observations.
        Acta Paediatr. 1999; 88: 477-482
        • Prietsch V.
        • Knoepke U.
        • Obladen M.
        Continuous monitoring of heart rate variability in preterm infants.
        Early Hum Dev. 1994; 37: 117-131
        • Cabal L.A.
        • Siassi B.
        • Zanini B.
        • Hodgman J.E.
        • Hon E.E.
        Factors affecting heart rate variability in preterm infants.
        Pediatrics. 1980; 65: 50-56
        • Sahni R.
        • Schulze K.F.
        • Kashyap S.
        • Ohira-Kist K.
        • Fifer W.P.
        • Myers M.M.
        Maturational changes in heart rate and heart rate variability in low birth weight infants.
        Dev Psychobiol. 2000; 37: 73-81
        • Clairambault J.
        • Curzi-Dascalova L.
        • Kauffmann F.
        • Medigue C.
        • Leffler C.
        Heart rate variability in normal sleeping full-term and preterm neonates.
        Early Hum Dev. 1992; 28: 169-183
        • Harper R.M.
        • Schechtman V.L.
        • Kluge K.A.
        Machine classification of infant sleep state using cardiorespiratory measures.
        Electroencephalogr Clin Neurophysiol. 1987; 67: 379-387
        • Miyazaki S.
        • Watanabe K.
        • Hara K.
        Heart rate variability in full-term normal and abnormal newborn infants during sleep.
        Brain Dev. 1979; 1: 57-60
        • Watanabe K.
        • Iwase K.
        • Hara K.
        Heart rate variability during sleep and wakefulness in low-birthweight infants.
        Biol Neonate. 1973; 22: 87-98
        • Pan J.
        • Tompkins W.J.
        A real-time QRS detection algorithm.
        IEEE Trans Biomed Eng. 1985; 32: 230-236
        • Myers M.M.
        • Fifer W.P.
        • Grose-Fifer J.
        • Sahni R.
        • Stark R.I.
        • Schulze K.F.
        A novel quantitative measure of trace-alternant EEG activity and its association with sleep states of preterm infants.
        Dev Psychobiol. 1997; 31: 167-174
      1. Dax JF. Development of a semi-automatic procedure for the analysis of EEG- and heart rate patterns in preterm neonates. Graz 2004. Master Thesis University of Technology, Graz.

      2. de Boer RW. Beat-to-beat blood-pressure fluctuations and heart-rate variability in man: physiological relationships, analysis techniques and a simple model. Utrecht: Drukkerij Elinkwijk B.V.; 1985. Thesis University of Amsterdam.

        • Urlesberger B.
        • Trip K.
        • Ruchti J.J.
        • Kerbl R.
        • Reiterer F.
        • Müller W.
        Quantification of cyclical fluctuations in cerebral blood volume in healthy infants.
        Neuropediatrics. 1998; 29: 208-211
        • Vanhatalo S.
        • Tallgren P.
        • Andersson S.
        • Sainio K.
        • Voipio J.
        • Kaila K.
        DC-EEG discloses prominent, very slow activity patterns during sleep in preterm infants.
        Clin Neurophysiol. 2002; 113: 1822-1825
        • Florian G.
        • Stancak A.
        • Pfurtscheller G.
        Cardiac response induced by voluntary self-paced finger movement.
        Int J Psychophysiol. 1998; 28: 273-283