Advertisement

Prolonged hypothermia protects neonatal rat brain against hypoxic-ischemia by reducing both apoptosis and necrosis

      Abstract

      Although hypothermia is an effective treatment for perinatal cerebral hypoxic-ischemic (HI) injury, it remains unclear how long and how deep we need to maintain hypothermia to obtain maximum neuroprotection. We examined effects of prolonged hypothermia on HI immature rat brain and its protective mechanisms using the Rice-Vannucci model. Immediately after the end of hypoxic exposure, the pups divided into a hypothermia group (30 °C) and a normothermia one (37 °C). Rectal temperature was maintained until they were sacrificed at each time point before 72 h post HI. Prolonged hypothermia significantly reduced macroscopic brain injury compared with normothermia group. Quantitative analysis of cell death using H&E-stained sections revealed the number of both apoptotic and necrotic cells was significantly reduced by hypothermia after 24 h post HI. Hypothermia seemed to decrease the number of TUNEL-positive cells. Immunohistochemistry and Western blot showed that prolonged hypothermia suppressed cytochrome c release from mitochondria to cytosol and activation of both caspase-3 and calpain in cortex, hippocampus, thalamus and striatum throughout the experiment. These results showed that prolonged hypothermia significantly reduced neonatal brain injury even when it was started after HI insult. Our results suggest that prolonged hypothermia protects neonatal brain after HI by reducing both apoptosis and necrosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yager J.
        • Towfighi J.
        • Vannucci R.C.
        Influence of mild hypothermia on hypoxic-ischemic brain damage in the immature rat.
        Pediatr Res. 1993; 34: 525-529
        • Yager J.Y.
        • Asselin J.
        Effect of mild hypothermia on cerebral energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat.
        Stroke. 1996; 27 ([discussion 926]): 919-925
        • Trescher W.H.
        • Ishiwa S.
        • Johnston M.V.
        Brief post-hypoxic-ischemic hypothermia markedly delays neonatal brain injury.
        Brain Dev. 1997; 19: 326-338
        • Bona E.
        • Hagberg H.
        • Loberg E.M.
        • Bagenholm R.
        • Thoresen M.
        Protective effects of moderate hypothermia after neonatal hypoxia-ischemia: short- and long-term outcome.
        Pediatr Res. 1998; 43: 738-745
        • Gunn A.J.
        • Gunn T.R.
        • de Haan H.H.
        • Williams C.E.
        • Gluckman P.D.
        Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs.
        J Clin Invest. 1997; 99: 248-256
        • Nakajima W.
        • Ishida A.
        • Lange M.S.
        • Gabrielson K.L.
        • Wilson M.A.
        • Martin L.J.
        • et al.
        Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat.
        J Neurosci. 2000; 20: 7994-8004
        • Johnston M.V.
        • Nakajima W.
        • Hagberg H.
        Mechanisms of hypoxic neurodegeneration in the developing brain.
        Neuroscientist. 2002; 8: 212-220
        • Sirimanne E.S.
        • Blumberg R.M.
        • Bossano D.
        • Gunning M.
        • Edwards A.D.
        • Gluckman P.D.
        • et al.
        The effect of prolonged modification of cerebral temperature on outcome after hypoxic-ischemic brain injury in the infant rat.
        Pediatr Res. 1996; 39: 591-597
        • Lorek A.
        • Takei Y.
        • Cady E.B.
        • Wyatt J.S.
        • Penrice J.
        • Edwards A.D.
        • et al.
        Delayed (‘secondary’) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy.
        Pediatr Res. 1994; 36: 699-706
        • Nedelcu J.
        • Klein M.A.
        • Aguzzi A.
        • Martin E.
        Resuscitative hypothermia protects the neonatal rat brain from hypoxic-ischemic injury.
        Brain Pathol. 2000; 10: 61-71
        • Gunn A.J.
        • Gluckman P.D.
        • Gunn T.R.
        Selective head cooling in newborn infants after perinatal asphyxia: a safety study.
        Pediatrics. 1998; 102: 885-892
        • Azzopardi D.
        • Robertson N.J.
        • Cowan F.M.
        • Rutherford M.A.
        • Rampling M.
        • Edwards A.D.
        Pilot study of treatment with whole body hypothermia for neonatal encephalopathy.
        Pediatrics. 2000; 106: 684-694
        • Battin M.R.
        • Dezoete J.A.
        • Gunn T.R.
        • Gluckman P.D.
        • Gunn A.J.
        Neurodevelopmental outcome of infants treated with head cooling and mild hypothermia after perinatal asphyxia.
        Pediatrics. 2001; 107: 480-484
        • Battin M.R.
        • Penrice J.
        • Gunn T.R.
        • Gunn A.J.
        Treatment of term infants with head cooling and mild systemic hypothermia (35.0 degrees c and 34.5 degrees c) after perinatal asphyxia.
        Pediatrics. 2003; 111: 244-251
        • Adachi M.
        • Sohma O.
        • Tsuneishi S.
        • Takada S.
        • Nakamura H.
        Combination effect of systemic hypothermia and caspase inhibitor administration against hypoxic-ischemic brain damage in neonatal rats.
        Pediatric Res. 2001; 50: 590-595
        • Engidawork E.
        • Loidl F.
        • Chen Y.
        • Kohlhauser C.
        • Stoeckler S.
        • Dell'Anna E.
        • et al.
        Comparison between hypothermia and glutamate antagonism treatments on the immediate outcome of perinatal asphyxia.
        Exp Brain Res. 2001; 138: 375-383
        • Tomimatsu T.
        • Fukuda H.
        • Endoh M.
        • Mu J.
        • Kanagawa T.
        • Hosono T.
        • et al.
        Long-term neuroprotective effects of hypothermia on neonatal hypoxic-ischemic brain injury in rats, assessed by auditory brainstem response.
        Pediatr Res. 2003; 53: 57-61
        • Tymianski M.
        • Sattler R.
        • Zabramski J.M.
        • Spetzler R.F.
        Characterization of neuroprotection from excitotoxicity by moderate and profound hypothermia in cultured cortical neurons unmasks a temperature-insensitive component of glutamate neurotoxicity.
        J Cereb Blood Flow Metab. 1998; 18: 848-867
        • Kil H.Y.
        • Zhang J.
        • Piantadosi C.A.
        Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats.
        J Cereb Blood Flow Metab. 1996; 16: 100-106
        • Dempsey R.J.
        • Combs D.J.
        • Maley M.E.
        • Cowen D.E.
        • Roy M.W.
        • Donaldson D.L.
        Moderate hypothermia reduces postischemic edema development and leukotriene production.
        Neurosurgery. 1987; 21: 177-181
        • Wang G.J.
        • Deng H.Y.
        • Maier C.M.
        • Sun G.H.
        • Yenari M.A.
        Mild hypothermia reduces ICAM-1 expression, neutrophil infiltration and microglia/monocyte accumulation following experimental stroke.
        Neuroscience. 2002; 114: 1081-1090
        • Edwards A.D.
        • Yue X.
        • Squier M.V.
        • Thoresen M.
        • Cady E.B.
        • Penrice J.
        • et al.
        Specific inhibition of apoptosis after cerebral hypoxia-ischaemia by moderate post-insult hypothermia.
        Biochem Biophys Res Commun. 1995; 217: 1193-1199
        • Bossenmeyer-Pourie C.
        • Koziel V.
        • Daval J.L.
        Effects of hypothermia on hypoxia-induced apoptosis in cultured neurons from developing rat forebrain: comparison with preconditioning.
        Pediatr Res. 2000; 47: 385-391
        • Towfighi J.
        • Zec N.
        • Yager J.
        • Housman C.
        • Vannucci R.C.
        Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia: a light microscopic study.
        Acta Neuropathol (Berl). 1995; 90: 375-386
        • Martin L.J.
        • Brambrink A.M.
        • Price A.C.
        • Kaiser A.
        • Agnew D.M.
        • Ichord R.N.
        • et al.
        Neuronal death in newborn striatum after hypoxia-ischemia is necrosis and evolves with oxidative stress.
        Neurobiol Dis. 2000; 7: 169-191
        • Northington F.J.
        • Ferriero D.M.
        • Graham E.M.
        • Traystman R.J.
        • Martin L.J.
        Early neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis.
        Neurobiol Dis. 2001; 8: 207-219
        • Rice III, J.E.
        • Vannucci R.C.
        • Brierley J.B.
        The influence of immaturity on hypoxic-ischemic brain damage in the rat.
        Ann Neurol. 1981; 9: 131-141
        • Yasuoka N.
        • Nakajima W.
        • Ishida A.
        • Takada G.
        Neuroprotection of edaravone on hypoxic-ischemic brain injury in neonatal rats.
        Brain Res Dev Brain Res. 2004; 151: 129-139
        • Wagner B.P.
        • Nedelcu J.
        • Martin E.
        Delayed postischemic hypothermia improves long-term behavioral outcome after cerebral hypoxia-ischemia in neonatal rats.
        Pediatr Res. 2002; 51: 354-360
        • Gavrieli Y.
        • Sherman Y.
        • Ben-Sasson S.A.
        Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation.
        J Cell Biol. 1992; 119: 493-501
        • de Torres C.
        • Munell F.
        • Ferrer I.
        • Reventos J.
        • Macaya A.
        Identification of necrotic cell death by the TUNEL assay in the hypoxic-ischemic neonatal rat brain.
        Neurosci Lett. 1997; 230: 1-4
        • Jiao Y.
        • Sun Z.
        • Lee T.
        • Fusco F.R.
        • Kimble T.D.
        • Meade C.A.
        • et al.
        A simple and sensitive antigen retrieval method for free-floating and slide-mounted tissue sections.
        J Neurosci Methods. 1999; 93: 149-162
        • Yue X.
        • Mehmet H.
        • Penrice J.
        • Cooper C.
        • Cady E.
        • Wyatt J.S.
        • et al.
        Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia.
        Neuropathol Appl Neurobiol. 1997; 23: 16-25
        • Thoresen M.
        • Bagenholm R.
        • Loberg E.M.
        • Apricena F.
        • Kjellmer I.
        Posthypoxic cooling of neonatal rats provides protection against brain injury.
        Arch Dis Child Fetal Neonatal Ed. 1996; 74: F3-F9
        • Pabello N.G.
        • Tracy S.J.
        • Keller Jr, R.W.
        Protective effects of brief intra- and delayed postischemic hypothermia in a transient focal ischemia model in the neonatal rat.
        Brain Res. 2004; 995: 29-38
        • Li Y.
        • Powers C.
        • Jiang N.
        • Chopp M.
        Intact, injured, necrotic and apoptotic cells after focal cerebral ischemia in the rat.
        J Neurol Sci. 1998; 156: 119-132
        • Sugawara T.
        • Fujimura M.
        • Morita-Fujimura Y.
        • Kawase M.
        • Chan P.H.
        Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia.
        J Neurosci. 1999; 19: RC39
        • Fujimura M.
        • Morita-Fujimura Y.
        • Kawase M.
        • Copin J.C.
        • Calagui B.
        • Epstein C.J.
        • et al.
        Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome c and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice.
        J Neurosci. 1999; 19: 3414-3422
        • Wang K.K.W.
        Calpain and caspase: can you tell the difference?.
        Trends Neurosci. 2000; 23: 20-26
        • Sidhu R.S.
        • Tuor U.I.
        • Del Bigio M.R.
        Nuclear condensation and fragmentation following cerebral hypoxia-ischemia occurs more frequently in immature than older rats.
        Neurosci Lett. 1997; 223: 129-132
        • Hu B.R.
        • Liu C.L.
        • Ouyang Y.
        • Blomgren K.
        • Siesjo B.K.
        Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation.
        J Cereb Blood Flow Metab. 2000; 20: 1294-1300
        • Gill R.
        • Soriano M.
        • Blomgren K.
        • Hagberg H.
        • Wybrecht R.
        • Miss M.T.
        • et al.
        Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain.
        J Cereb Blood Flow Metab. 2002; 22: 420-430
        • Puka-Sundvall M.
        • Wallin C.
        • Gilland E.
        • Hallin U.
        • Wang X.
        • Sandberg M.
        • et al.
        Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats: relationship to activation of caspase-3 and neuronal injury.
        Brain Res Dev Brain Res. 2000; 125: 43-50
        • Blomgren K.
        • Zhu C.
        • Hallin U.
        • Hagberg H.
        Mitochondria and ischemic reperfusion damage in the adult and in the developing brain.
        Biochem Biophys Res Commun. 2003; 304: 551-559
        • Zhu C.
        • Wang X.
        • Cheng X.
        • Qiu L.
        • Xu F.
        • Simbruner G.
        • et al.
        Post-ischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia-ischemia.
        Brain Res. 2004; 996: 67-75
        • Chen J.
        • Nagayama T.
        • Jin K.
        • Stetler R.A.
        • Zhu R.L.
        • Graham S.H.
        • et al.
        Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia.
        J Neurosci. 1998; 18: 4914-4928
        • Zhu C.
        • Wang X.
        • Hagberg H.
        • Blomgren K.
        Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia.
        J Neurochem. 2000; 75: 819-829
        • Enari M.
        • Sakahira H.
        • Yokoyama H.
        • Okawa K.
        • Iwamatsu A.
        • Nagata S.
        A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor icad.
        Nature. 1998; 391: 43-50
        • Han B.H.
        • D'Costa A.
        • Back S.A.
        • Parsadanian M.
        • Patel S.
        • Shah A.R.
        • et al.
        BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia.
        Neurobiol Dis. 2000; 7: 38-53
        • Rami A.
        • Jansen S.
        • Giesser I.
        • Winckler J.
        Post-ischemic activation of caspase-3 in the rat hippocampus: evidence of an axonal and dendritic localisation.
        Neurochem Int. 2003; 43: 211-223
        • Fukuda H.
        • Tomimatsu T.
        • Watanabe N.
        • Mu J.W.
        • Kohzuki M.
        • Endo M.
        • et al.
        Post-ischemic hypothermia blocks caspase-3 activation in the newborn rat brain after hypoxia-ischemia.
        Brain Res. 2001; 910: 187-191
        • Harada K.
        • Maekawa T.
        • Tsuruta R.
        • Kaneko T.
        • Sadamitsu D.
        • Yamashima T.
        • et al.
        Hypothermia inhibits translocation of CaM kinase II and PKC-α, β, γ isoforms and fodrin proteolysis in rat brain synaptosome during ischemia-reperfusion.
        J Neurosci Res. 2002; 67: 664-669
        • Liebetrau M.
        • Burggraf D.
        • Martens H.K.
        • Pichler M.
        • Hamann G.F.
        Delayed moderate hypothermia reduces calpain activity and breakdown of its substrate in experimental focal cerebral ischemia in rats.
        Neurosci Lett. 2004; 357: 17-20
        • Wang X.
        • Karlsson J.O.
        • Zhu C.
        • Bahr B.A.
        • Hagberg H.
        • Blomgren K.
        Caspase-3 activation after neonatal rat cerebral hypoxia-ischemia.
        Biol Neonate. 2001; 79: 172-179
        • Han B.H.
        • Xu D.
        • Choi J.
        • Han Y.
        • Xanthoudakis S.
        • Roy S.
        • et al.
        Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death after neonatal hypoxic-ischemic brain injury.
        J Biol Chem. 2002; 277: 30128-30136