Advertisement
Original article| Volume 27, ISSUE 4, P275-278, June 2005

Download started.

Ok

Modification of AMPA receptor properties following environmental enrichment

      Abstract

      Environmental enrichment results in many modifications in the brain such as structural, behavioural, and biochemical changes. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type receptors for excitatory amino acid glutamate are recently found to be involved in neuronal plasticity. In this study, we examined whether environmental enrichment modified the brain expression of mRNA for subunit composition of AMPA receptors in adult mice using the real-time quantitative PCR method and western blotting. Mice housed in enriched environments showed significantly higher levels of GluR2 and GluR4 subunits in the hippocampus compared to control mice. We concluded that environmental enrichment can change the expression of AMPA receptor subunits and thus might modify the potentials of brain plasticity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Praag H.
        • Kempermann G.
        • Gage F.H.
        Neural consequences of environmental enrichment.
        Nat Rev Neurosci. 2000; 1: 191-198
        • Mohammed A.H.
        • Zhu S.W.
        • Darmopil S.
        • Hjerling-Leffler J.
        • Ernfors P.
        • Winblad B.
        • et al.
        Environmental enrichment and the brain.
        Prog Brain Res. 2002; 138: 109-133
        • Rosenzweig M.R.
        • Bennett E.L.
        • Hebert M.
        • Morimoto H.
        Social grouping cannot account for cerebral effects of enriched environments.
        Brain Res. 1978; 153: 563-576
        • Nilsson M.
        • Perfilieva E.
        • Johansson U.
        • Orwar O.
        • Eriksson P.S.
        Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory.
        J Neurobiol. 1999; 39: 569-578
        • Young D.
        • Lawlor P.A.
        • Leone P.
        • Dragunow M.
        • During M.J.
        Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective.
        Nat Med. 1999; 5: 448-453
        • Rampon C.
        • Tang Y.P.
        • Goodhouse J.
        • Shimizu E.
        • Kyin M.
        • Tsien J.Z.
        Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice.
        Nat Neurosci. 2000; 3: 238-244
        • Pham T.M.
        • Ickes B.
        • Albeck D.
        • Soderstrom S.
        • Granholm A.C.
        • Mohammed A.H.
        Changes in brain nerve growth factor levels and nerve growth factor receptors in rats exposed to environmental enrichment for one year.
        Neuroscience. 1999; 94: 279-286
        • Torasdotter M.
        • Metsis M.
        • Henriksson B.G.
        • Winblad B.
        • Mohammed A.H.
        Expression of neurotrophin-3 mRNA in the rat visual cortex and hippocampus is influenced by environmental conditions.
        Neurosci Lett. 1996; 218: 107-110
        • Torasdotter M.
        • Metsis M.
        • Henriksson B.G.
        • Winblad B.
        • Mohammed A.H.
        Environmental enrichment results in higher levels of nerve growth factor mRNA in the rat visual cortex and hippocampus.
        Behav Brain Res. 1998; 93: 83-90
        • Naka F.
        • Shiga T.
        • Yaguchi M.
        • Okado N.
        An enriched environment increases noradrenalin concentration in the mouse brain.
        Brain Res. 2002; 924: 124-126
        • Song I.
        • Huganir R.L.
        Regulation of AMPA receptors during sunaptic plasticity.
        Trends Neurosci. 2002; 25: 578-588
        • Hollmann M.
        • Heinemann S.
        Cloned glutamate receptors.
        Annu Rev Neurosci. 1994; 17: 31-108
        • Borges K.
        • Myers S.J.
        • Zhang S.
        • Dingledine R.
        Activity of the rat GluR4 promoter in transfected cortical neurons and glia.
        J Neurochem. 2003; 86: 1162-1173
        • Pellegrini-Giampietro D.E.
        • Gorter J.A.
        • Bennett M.V.
        • Zukin R.S.
        The GluR2 (GluR-B) hypothesis: Ca2+-permeable AMPA receptors in neurological disorders.
        Trends Neurosci. 1997; 20: 464-470
        • Friedman L.K.
        • Segal M.
        • Velísková J.
        GluR2 knockdown reveals a dissociation between [Ca2+]i surge and neurotoxicity.
        Neurochem Int. 2003; 43: 179-189
        • Hollmann M.
        • Hartley M.
        • Heinemann S.
        Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition.
        Science. 1991; 252: 851-853
        • Nishimune A.
        • Isaac J.T.
        • Molnar E.
        • Noel J.
        • Nash S.R.
        • Tagaya M.
        • et al.
        NSF binding to GluR2 regulates synaptic transmission.
        Neuron. 1998; 21: 87-97
        • Meng Y.
        • Zhang Y.
        • Jia Z.
        Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3.
        Neuron. 2003; 39: 163-176
        • Zhu J.
        • Esteban J.J.A.
        • Hayashi Y.
        • Malinow R.
        Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity.
        Nat Neurosci. 2000; 3: 1098-1106
        • Shutoh F.
        • Hamada S.
        • Shibata M.
        • Narita M.
        • Shiga T.
        • Azmitia E.C.
        • et al.
        Long term depletion of serotonin leads to selective changes in glutamate receptor subunits.
        Neurosci Res. 2000; 38: 365-371
        • Babb T.L.
        • Ying Z.
        • Hadam J.
        • Penrod C.
        Glutamate receptor mechanisms in human epileptic dysplastic cortex.
        Epilepsy Res. 1998; 32: 24-33
        • Kawahara Y.
        • Kwak S.
        • Sun H.
        • Ito K.
        • Hashida H.
        • Aizawa H.
        Human spinal motoneurons express low relative abundance of GluR2 mRNA; an implication for excitotoxicity in ALS.
        J Neurochem. 2003; 85: 680-689
        • Miyazaki K.
        • Narita N.
        • Sakuta R.
        • Miyahara T.
        • Naruse H.
        • Okado N.
        • et al.
        Serum neurotrophin concentrations in autism and mental retardation: a pilot study.
        Brain Dev. 2004; 26: 292-295
        • Mizuno M.
        • Yamada K.
        • Olariu A.
        • Nawa H.
        • Nabeshima T.
        Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats.
        J Neurosci. 2000; 20: 7116-7121
        • Walsh R.N.
        • Cummins R.A.
        Mechanism mediating the production of environmentally induced brain changes.
        Psychol Bull. 1975; 88: 360-367
        • Rosenzweig M.R.
        • Bennett E.L.
        Psychobiology of plasticity: effects of training and experience on brain and behavior.
        Behav Brain Res. 1996; 78: 57-65
        • Jia Z.
        • Agopyan N.
        • Miu P.
        • Xiong Z.
        • Henderson J.
        • Gerlai R.
        • et al.
        Enhanced LTP in mice deficient in the AMPA receptor GluR2.
        Neuron. 1996; 17: 945-956