Advertisement

Neurological aspects of the Angelman syndrome

      Abstract

      Angelman syndrome (AS) has emerged as an important neurogenetic syndrome due to its relatively high prevalence and easier confirmation of the diagnosis by improved genetic testing. In infancy, nonspecific clinical features of AS pose diagnostic challenges to the neurologist and these include any combination of microcephaly, seizure disorder, global developmental delay or an ataxic/hypotonic cerebral palsy-like picture. In later childhood, however, absent speech, excessively happy behavior, ataxia and jerky movements usually present as a recognizable clinical syndrome. Brain MRI shows nonspecific or normal findings but occasionally the characteristic EEG patterns alone can lead to the correct diagnosis. The physical, clinical and behavioral aspects appear to be attributable to localized CNS dysfunction of the ubiquitin ligase gene, UBE3A, located at 15q11.2. In certain brain regions, UBE3A normally has mono-allelic expression from the maternally derived chromosome 15. Several distinct genetic mechanisms can inactivate or disrupt the maternally derived UBE3A: chromosome microdeletions, paternal uniparental disomy, imprinting defects and intragenic UBE3A mutations. Those with the deletion type of AS are the most prevalent (about 70% of cases) and appear to have a more severe clinical phenotype. The unique epileptic patterns and distinct behavioral features may be related to multiple actions of UBE3A, possibly occurring during, as well as after, the time of neuronal development.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Angelman H.
        Puppet children: a report on three cases.
        Dev Med Child Neurol. 1965; 7: 681-688
        • Jiang Y.
        • Lev-Lehman E.
        • Bressler J.
        • Tsai T.F.
        • Beaudet A.L.
        Genetics of Angelman syndrome.
        Am J Hum Genet. 1999; 65: 1-6
        • Mann M.R.
        • Bartolomei M.S.
        Towards a molecular understanding of Prader-Willi and Angelman syndromes.
        Hum Mol Genet. 1999; 8: 1867-1873
        • Clayton-Smith J.
        • Laan L.
        Angelman syndrome: a review of the clinical and genetic aspects.
        J Med Genet. 2003; 40: 87-95
        • Steffenburg S.
        • Gillberg C.L.
        • Steffenburg U.
        • Kyllerman M.
        Autism in Angelman syndrome: a population-based study.
        Pediatr Neurol. 1996; 14: 131-136
        • Petersen M.B.
        • Brondum-Nielsen K.
        • Hansen L.K.
        • Wulff K.
        Clinical, cytogenetic, and molecular diagnosis of Angelman syndrome: estimated prevalence rate in a Danish county.
        Am J Med Genet. 1995; 60: 261-262
        • Vercesi A.M.
        • Carvalho M.R.
        • Aguiar M.J.
        • Pena S.D.
        Prevalence of Prader-Willi and Angelman syndromes among mentally retarded boys in Brazil.
        J Med Genet. 1999; 36: 498
        • Aquino N.H.
        • Bastos E.
        • Fonseca L.C.
        • Llerena Jr, J.C.
        Angelman syndrome methylation screening of 15q11–q13 in institutionalized individuals with severe mental retardation.
        Genet Test. 2002; 6: 129-131
        • Jacobsen J.
        • King B.H.
        • Leventhal B.L.
        • Christian S.L.
        • Ledbetter D.H.
        • Cook Jr, E.H.
        Molecular screening for proximal 15q abnormalities in a mentally retarded population.
        J Med Genet. 1998; 35: 534-538
        • Buckley R.H.
        • Dinno N.
        • Weber P.
        Angelman syndrome: are the estimates too low?.
        Am J Med Genet. 1998; 80: 385-390
        • Williams C.A.
        • Angelman H.
        • Clayton-Smith J.
        • Driscoll D.J.
        • Hendrickson J.E.
        • Knoll J.H.
        • et al.
        Angelman syndrome: consensus for diagnostic criteria. Angelman syndrome foundation.
        Am J Med Genet. 1995; 56: 237-238
        • Fryburg J.S.
        • Breg W.R.
        • Lindgren V.
        Diagnosis of Angelman syndrome in infants.
        Am J Med Genet. 1991; 38: 58-64
        • King R.A.
        • Wiesner G.L.
        • Townsend D.
        • White J.G.
        Hypopigmentation in Angelman syndrome.
        Am J Med Genet. 1993; 46: 40-44
        • Boyd S.G.
        • Harden A.
        • Patton M.A.
        The EEG in early diagnosis of the Angelman (happy puppet) syndrome.
        Eur J Pediatr. 1988; 147: 508-513
        • Laan L.A.
        • Renier W.O.
        • Arts W.F.
        • Buntinx I.M.
        • v.d. Burgt I.J.
        • Stroink H.
        • et al.
        Evolution of epilepsy and EEG findings in Angelman syndrome.
        Epilepsia. 1997; 38: 195-199
        • Kishino T.
        • Lalande M.
        • Wagstaff J.
        UBE3A/E6-AP mutations cause Angelman syndrome [published erratum appears in Nat Genet, 1997 Apr;15(4):411].
        Nat Genet. 1997; 15: 70-73
        • Matsuura T.
        • Sutcliffe J.S.
        • Fang P.
        • Galjaard R.J.
        • Jiang Y.H.
        • Benton C.S.
        • et al.
        De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome.
        Nat Genet. 1997; 15: 74-77
        • Rougeulle C.
        • Glatt H.
        • Lalande M.
        The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain [letter].
        Nat Genet. 1997; 17: 14-15
        • Albrecht U.
        • Sutcliffe J.S.
        • Cattanach B.M.
        • Beechey C.V.
        • Armstrong D.
        • Eichele G.
        • et al.
        Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons.
        Nat Genet. 1997; 17: 75-78
        • Runte M.
        • Huttenhofer A.
        • Gross S.
        • Kiefmann M.
        • Horsthemke B.
        • Buiting K.
        The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A.
        Hum Mol Genet. 2001; 10: 2687-2700
        • Perk J.
        • Makedonski K.
        • Lande L.
        • Cedar H.
        • Razin A.
        • Shemer R.
        The imprinting mechanism of the Prader-Willi/Angelman regional control center.
        Eur Med Biol Org J. 2002; 21: 5807-5814
        • Nicholls R.D.
        • Knepper J.L.
        Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes.
        Annu Rev Genomics Hum Genet. 2001; 2: 153-175
        • Pujana M.A.
        • Nadal M.
        • Guitart M.
        • Armengol L.
        • Gratacos M.
        • Estivill X.
        Human chromosome 15q11–q14 regions of rearrangements contain clusters of LCR15 duplicons.
        Eur J Hum Genet. 2002; 10: 26-35
        • Pujana M.A.
        • Nadal M.
        • Gratacos M.
        • Peral B.
        • Csiszar K.
        • Gonzalez-Sarmiento R.
        • et al.
        Additional complexity on human chromosome 15q: identification of a set of newly recognized duplicons (LCR15) on 15q11-q13, 15q24, and 15q26.
        Genome Res. 2001; 11: 98-111
        • Gimelli G.
        • Pujana M.A.
        • Patricelli M.G.
        • Russo S.
        • Giardino D.
        • Larizza L.
        Genomic inversions of human chromosome 15q11–q13 in mothers of Angelman syndrome patients with class II (BP2/3) deletions.
        Hum Mol Genet. 2003; 12: 849-858
        • Robinson W.P.
        • Christian S.L.
        • Kuchinka B.D.
        • Penaherrera M.S.
        • Das S.
        • Schuffenhauer S.
        • et al.
        Somatic segregation errors predominantly contribute to the gain or loss of a paternal chromosome leading to uniparental disomy for chromosome 15.
        Clin Genet. 2000; 57: 349-358
        • Buiting K.
        • Gross S.
        • Lich C.
        • Gillessen-Kaesbach G.
        • El-Maarri O.
        • Horsthemke B.
        Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect.
        Am J Hum Genet. 2003; 72: 571-577
        • Lossie A.C.
        • Whitney M.M.
        • Amidon D.
        • Dong H.J.
        • Chen P.
        • Theriaque D.
        • et al.
        Distinct phenotypes distinguish the molecular classes of Angelman syndrome.
        J Med Genet. 2001; 38: 834-845
        • Tekin M.
        • Jackson-Cook C.
        • Buller A.
        • Ferreira-Gonzalez A.
        • Pandya A.
        • Garrett C.T.
        • et al.
        Fluorescence in situ hybridization detectable mosaicism for Angelman syndrome with biparental methylation.
        Am J Med Genet. 2000; 95: 145-149
        • Williams C.A.
        • Lossie A.
        • Driscoll D.
        Angelman syndrome: mimicking conditions and phenotypes.
        Am J Med Genet. 2001; 101: 59-64
        • Stalker H.J.
        • Williams C.A.
        Genetic counseling in Angelman syndrome: the challenges of multiple causes [see comments].
        Am J Med Genet. 1998; 77: 54-59
        • Yamamoto Y.
        • Huibregtse J.M.
        • Howley P.M.
        The human E6-AP gene (UBE3A) encodes three potential protein isoforms generated by differential splicing.
        Genomics. 1997; 41: 263-266
        • Kishino T.
        • Wagstaff J.
        Genomic organization of the UBE3A/E6-AP gene and related pseudogenes.
        Genomics. 1998; 47: 101-107
        • Scheffner M.
        • Huibregtse J.M.
        • Vierstra R.D.
        • Howley P.M.
        The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53.
        Cell. 1993; 75: 495-505
        • Huibregtse J.M.
        • Scheffner M.
        • Beaudenon S.
        • Howley P.M.
        A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase.
        Proc Natl Acad Sci USA. 1995; 92: 2563-2567
        • Scheffner M.
        • Nuber U.
        • Huibregtse J.M.
        Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade.
        Nature. 1995; 373: 81-83
        • Ciechanover A.
        The ubiquitin-proteasome proteolytic pathway.
        Cell. 1994; 79: 13-21
        • Verdecia M.A.
        • Joazeiro C.A.
        • Wells N.J.
        • Ferrer J.L.
        • Bowman M.E.
        • Hunter T.
        • et al.
        Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase.
        Mol Cell. 2003; 11: 249-259
        • Malzac P.
        • Webber H.
        • Moncla A.
        • Graham J.M.
        • Kukolich M.
        • Williams C.
        • et al.
        Mutation analysis of UBE3A in Angelman syndrome patients.
        Am J Hum Genet. 1998; 62: 1353-1360
        • Weissman A.M.
        Themes and variations on ubiquitylation.
        Nat Rev Mol Cell Biol. 2001; 2: 169-178
        • Hicke L.
        Protein regulation by monoubiquitin.
        Nat Rev Mol Cell Biol. 2001; 2: 195-201
        • Conaway R.C.
        • Brower C.S.
        • Conaway J.W.
        Emerging roles of ubiquitin in transcription regulation.
        Science. 2002; 296: 1254-1258
        • Miura K.
        • Kishino T.
        • Li E.
        • Webber H.
        • Dikkes P.
        • Holmes G.L.
        • Wagstaff J.
        Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice.
        Neurobiol Dis. 2002; 9: 149-159
        • Oda H.
        • Kumar S.
        • Howley P.M.
        Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination.
        Proc Natl Acad Sci USA. 1999; 96: 9557-9562
        • Kumar S.
        • Talis A.L.
        • Howley P.M.
        Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination.
        J Biol Chem. 1999; 274: 18785-18792
        • Jiang Y.H.
        • Armstrong D.
        • Albrecht U.
        • Atkins C.M.
        • Noebels J.L.
        • Eichele G.
        • et al.
        Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation [see comments].
        Neuron. 1998; 21: 799-811
        • Murphey R.K.
        • Godenschwege T.A.
        New roles for ubiquitin in the assembly and function of neuronal circuits.
        Neuron. 2002; 36: 5-8
        • Hegde A.N.
        • DiAntonio A.
        Ubiquitin and the synapse.
        Nat Rev Neurosci. 2002; 3: 854-861