Advertisement

Neurobiology and neurochemistry of Rett syndrome

      Abstract

      The current status of neurobiological and neurochemical research on Rett syndrome is reviewed, and correlations are developed with previously described neurophysiological, neuroimaging, neuropathological, and immunohistochemical changes. We review the abnormalities reported in the biogenic amine neurotransmitters/receptor systems, and of β-phenylethylamine, an endogenous amine synthesized by the decarboxylation of phenylalanine in dopaminergic neurons of the nigrostriatal system. We also discuss the roles of other neurotransmitters, including β-endorphin and substance P, and neurotrophic factors, including nerve growth factors. Recently, DNA mutations in the methyl–CpG binding protein 2, mapped to Xq28, have been identified in some patients with Rett syndrome. The multiple abnormalities in the various neurotransmitters/receptor systems explain the pervasive effects of Rett syndrome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • The Rett Syndrome Diagnostic Criteria Work Group
        Diagnostic criteria for Rett syndrome.
        Ann Neurol. 1988; 23: 425-428
        • Amir R.E.
        • Van den Veyver I.B.
        • Wan M.
        • Tran C.Q.
        • Francke U.
        • Zoghbi H.Y.
        Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl–CpG-binding protein 2.
        Nat Genet. 1999; 23: 185-188
        • Nomura Y.
        • Honda K.
        • Segawa M.
        Pathophysiology of Rett syndrome.
        Brain Dev. 1987; 9: 506-513
        • Segawa M.
        • Nomura Y.
        Polysomnography in the Rett syndrome.
        Brain Dev. 1992; 14: S46-S54
        • Zoghbi H.
        • Milstien H.
        • Butler I.J.
        • Smith O.B.
        • Kaufman S.
        • Glaze D.G.
        • et al.
        Cerebrospinal fluid biogenic amines and biopterin in Rett syndrome.
        Ann Neurol. 1989; 25: 56-60
        • Perry T.L.
        • Dunn H.G.
        • Ho H-H.
        • Crichton J.U.
        Cerebrospinal fluid values for monoamine metabolites, gamma aminobutyric acid, and other amino compounds in Rett syndrome.
        J Pediatr. 1988; 112: 234-238
        • Wenk G.L.
        • Mobley S.L.
        Rett syndrome: neurobiological changes underlying specific symptoms.
        Prog Neurobiol. 1997; 51: 383-391
        • Lekman A.
        • Witt-Engerstrom I.
        • Gottfries J.
        • Hagberg B.
        • Percy A.K.
        • Svennerholm L.
        Rett syndrome: biogenic amines and metabolites in postmortem brain.
        Pediatr Neurol. 1989; 5: 357-362
        • Wenk G.L.
        Alteration in dopaminergic function in Rett syndrome.
        Neuropediatrics. 1995; 26: 123-125
        • Naidu S.
        • Kaufmann W.
        • Abrams M.
        • Pearlson G.D.
        • Lanhalm D.C.
        • Fredericksen K.A.
        • et al.
        Neuroimaging studies in Rett syndrome. World Congress on Rett Syndrome 2000, Karuizawa, Japan. 2000
        • Chiron C.
        • Bulteau C.
        • Loc'h C.
        • Raynaud C.
        • Garreau B.
        • Syrota A.
        • et al.
        Dopaminergic D2 receptor SPECT imaging in Rett syndrome: increase of specific binding in striatum.
        J Nucl Med. 1993; 34: 1717-1721
        • Kitt C.A.
        • Troncoso J.C.
        • Price D.L.
        • Naidu S.
        • Moser H.
        Pathological changes in substantia nigra and basal forebrain neurons in Rett syndrome.
        Ann Neurol. 1990; 28: 416-417
        • Wenk G.L.
        • Hauss-Wegrzyniak B.
        Altered cholinergic function in the basal forebrain of girls with Rett syndrome.
        Neuropediatrics. 1996; 30: 125-129
        • Vanhala R.
        • Korhonen L.
        • Mikelsaar M.
        • Lindholm D.
        • Riikonen R.
        Neurotrophic factors in cerebrospinal fluid and serum of patients with Rett syndrome.
        J Child Neurol. 1998; 13: 429-433
        • Blue M.E.
        • Naidu S.
        • Johnston M.V.
        Development of amino acid receptors in frontal cortex from girls with Rett syndrome.
        Ann Neurol. 1999; 45: 541-545
        • Hamberger A.
        • Gillberg C.
        • Palm A.
        • Hagberg B.
        Elevated CSF glutamate in Rett syndrome.
        Neuropediatrics. 1992; 23: 212-213
        • Kaufmann W.E.
        • Naidu S.
        • Budden S.
        Abnormal expression of microtubule-associated protein 2 (MAP-2) in neocortex in Rett syndrome.
        Neuropediatrics. 1995; 26: 109-113
        • Yamashita Y.
        • Matsuishi T.
        • Ishibashi M.
        • Kimura A.
        • Onishi Y.
        • Yonekura Y.
        • et al.
        Decrease in benzodiazepine receptor binding in the brain of adult Rett syndrome.
        J Neurol Sci. 1998; 154: 146-150
        • Haas R.H.
        • Rice M.A.
        • Trauner D.A.
        • Meritt A.
        Ketogenic diet in Rett syndrome.
        Am J Med Genet. 1986; 24: 5225-5246
        • Wakai S.
        • Kameda K.
        • Ishikawa Y.I.
        • Miyamoto S.
        • Nagaoka M.
        • Okabe M.
        • et al.
        Rett syndrome: findings suggesting axonopathy and mitochondrial abnormalities.
        Pediatr Neurol. 1990; 6: 164-166
        • Matsuishi T.
        • Urabe F.
        • Komori H.
        • Yamashita Y.
        • Naito E.
        • Kuroda Y.
        • et al.
        The Rett syndrome and CSF lactic patterns.
        Brain Dev. 1992; 14: 68-70
        • Kiushnik T.P.
        • Gratchev V.V.
        • Ermakova S.A.
        The level of autoantibodies to nerve growth factor and S-100 protein in blood of Rett syndrome girls Abstract.
        in: World Congress on Rett Syndrome 2000, Karuizawa, Japan. 2000: 41
        • Lekman A.K.
        • Hagberg B.
        • Svennerholm L.T.
        Membrane cerebral lipids in Rett syndrome.
        Pediatr Neurol. 1991; 7: 186-190
        • Lekman A.K.
        • Hagberg B.
        • Svennerholm L.T.
        Altered cerebellar ganglioside pattern in Rett syndrome.
        Neurochem Int. 1991; 19: 505-509
        • Svennerholm L.
        • Bostrim K.
        • Fredman P.
        • Mansson J.E.
        • Rosengren B.
        • Rynmark B.-M.
        Human brain gangliosides: developmental changes from early fetal stage to advanced age.
        Biochim Biophys Acta. 1989; 1005: 109-117
        • Myer E.C.
        • Tripathi H.L.
        • Dewey W.L.
        Hyperendorphinism in Rett syndrome: cause or result?.
        Ann Neurol. 1988; 24: 340-341
        • Budden S.S.
        • Myer E.C.
        • Buttler I.J.
        Cerebrospinal fluid studies in the Rett syndrome: biogenic amines and beta endorphins.
        Brain Dev. 1990; 12: 81-84
        • Matsuishi T.
        • Nagamitsu S.
        • Yamashita Y.
        • et al.
        Decreased cerebrospinal fluid levels of substance P in patients with Rett syndrome.
        Ann Neurol. 1997; 42: 978-981
        • Mai J.K.
        • Stephens P.H.
        • Hope A.
        • Cuello A.C.
        Substance P in the human brain.
        Neuroscience. 1986; 17: 709-739
        • Hender J.
        • Hender T.
        • Wessberg P.
        • Jonason J.
        Interaction of substance P with respiratory control system in the rat.
        J Pharmacol Exp Ther. 1983; 228: 196-201
        • Deguchi K.
        • Antalffy B.A.
        • Twohill L.J.
        • Chakraborty S.
        • Glaze D.G.
        • Armstrong D.D.
        Substance P immunoreactivity in Rett syndrome.
        Pediatr Neurol. 2000; 22: 259-266
        • Hökfelt T.
        • Holets V.R.
        • Staines W.
        • Meister B.
        • Melander T.
        • Schalling M.
        • et al.
        Coexistence of neuronal messengers: an overview.
        in: Hökfelt T. Fuxe K. Pernow B. Progress in brain research. Elsevier, Amsterdam1986: 33-70
        • Lundberg J.M.
        • Hökfelt T.
        Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurons: functional and pharmacological implications.
        in: Hökfelt T. Fuxe K. Pernow B. Progress in brain research. Elsevier, Amsterdam1986: 241-262
        • Whitty C.J.
        • Kapatos G.
        • Bannon M.J.
        Neurotrophic effects of substance P on hippocampal neurons in vitro.
        Neurosci Lett. 1993; 164: 141-144
        • Satoi M.
        • Matsuishi T.
        • Yamada S.
        • Yamashita Y.
        • Ohtaki E.
        • Mori K.
        • et al.
        Decreased cerebrospinal fluid levels of β-phenylethylamine in patients with Rett syndrome.
        Ann Neurol. 2000; 47: 801-803
        • Baker G.B.
        • Bornstein R.A.
        • Rouget A.C.
        • Ashton S.E.
        • van Muyden J.C.
        • Coutts R.T.
        Phenylethylaminergic mechanisms in attention-deficit disorder.
        Biol Psychiatry. 1991; 29: 15-22
        • Zhou G.
        • Shoji H.
        • Yamada S.
        • Matsuishi T.
        Decreased cerebrospinal fluid β3-phenylethylamine in Parkinson's disease.
        J Neurol Neurosurg Psychiatry. 1997; 63: 754-758
        • Amir R.E.
        • Van den Veyver I.B.
        • Schultz R.
        • Malicki D.M.
        • Tran C.Q.
        • Dahle E.J.
        • et al.
        Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes.
        Ann Neurol. 2000; 47: 670-679
        • Nan X.
        • Guy J.
        • Hendrich B.
        • Free A.
        • Ng H.-H.
        • Bird A.
        Biological function of the methyl–CpG binding protein MECP2 Abstract.
        in: World Congress on Rett Syndrome 2000, Karuizawa, Japan. 2000: 2