Original article| Volume 23, SUPPLEMENT 1, S147-S151, December 2001

Mutations in the gene encoding methyl-CpG-binding protein 2 cause Rett syndrome

  • Ignatia B. Van den Veyver
    Corresponding author. Tel.: +1-713-798-4914; fax: +1-713-798-8728
    Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

    Department of Obstetrics and Gynecology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
    Search for articles by this author
  • Huda Y. Zoghbi
    Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

    Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

    Howard Hughes Medical Institute, Houston, TX, USA
    Search for articles by this author


      Rett syndrome is an X-linked dominant neurodevelopmental disorder primarily affecting girls. About 80% of classic Rett syndrome is caused by mutations in the gene for methyl-CpG-binding protein (MeCP2) in Xq28. MeCP2 links DNA methylation to transcriptional repression, and MECP2 mutations likely cause partial or complete loss of function of the protein, leading to inappropriate transcription of downstream genes at critical times in brain development. More severe and milder variant forms can all be caused by similar mutations. Most classic Rett syndrome patients have random X-chromosome inactivation (XCI), but skewed patterns are present in a few. All asymptomatic or mildly mentally delayed female carriers studied to date have non-random XCI patterns, suggesting that this attenuates the deleterious effects of the MECP2 mutations in these women. The finding of non-random XCI patterns in some patients with very early truncations is consistent with this observation and supports that many mutations could cause partial and not complete loss of function. Our observation that the mutant mRNA is stable in three patients with truncating mutations supports this possibility. Further studies will have to be performed to better understand the functional consequences of MECP2 mutations in RTT.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Hagberg B.
        Rett's syndrome: prevalence and impact on progressive severe mental retardation in girls.
        Acta Paediatr Scand. 1985; 74: 405-408
        • Hagberg B.
        • Aicardi J.
        • Dias K.
        • Ramos O.
        A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases.
        Ann Neurol. 1983; 14: 471-479
        • Hagberg B.:.
        Clinical delineation of Rett syndrome variants.
        Neuropediatrics. 1995; 26: 62
        • Zappella M.
        • Gillberg C.
        • Ehlers S.
        The preserved speech variant: a subgroup of the Rett complex: a clinical report of 30 cases.
        J Autism Dev Disord. 1998; 28: 519-526
        • Martinho P.S.
        • Otto P.G.
        • Kok F.
        • Diament A.
        • Marques-Dias M.J.
        • Gonzalez C.H.
        In search of a genetic basis for the Rett syndrome.
        Hum Genet. 1990; 86: 131-134
        • Migeon B.R.
        • Dunn M.A.
        • Thomas G.
        • Schmeckpeper B.J.
        • Naidu S.
        Studies of X inactivation and isodisomy in twins provide further evidence that the X chromosome is not involved in Rett syndrome.
        Am J Hum Genet. 1995; 56: 647-653
        • Zoghbi H.:.
        Genetic aspects of Rett syndrome.
        J Child Neurol. 1988; 3: S76-S78
        • Engerstrom I.W.
        • Forslund M.
        Mother and daughter with Rett syndrome [letter].
        Dev Med Child Neurol. 1992; 34: 1022-1023
        • Zoghbi H.Y.
        • Percy A.K.
        • Schultz R.J.
        • Fill C.
        Patterns of X chromosome inactivation in the Rett syndrome.
        Brain Dev. 1990; 12: 131-135
        • Schanen N.C.
        • Dahle E.J.
        • Capozzoli F.
        • Holm V.A.
        • Zoghbi H.Y.
        • Francke U.
        A new Rett syndrome family consistent with X-linked inheritance expands the X chromosome exclusion map.
        Am J Hum Genet. 1997; 61: 634-641
        • Sirianni N.
        • Naidu S.
        • Pereira J.
        • Pillotto R.F.
        • Hoffman E.P.
        Rett syndrome: confirmation of X-linked dominant inheritance, and localization of the gene to Xq28.
        Am J Hum Genet. 1998; 63: 1552-1558
        • Schanen C.
        • Francke U.
        A severely affected male born into a Rett syndrome kindred supports X- linked inheritance and allows extension of the exclusion map [letter].
        Am J Hum Genet. 1998; 63: 267-269
        • Archidiacono N.
        • Lerone M.
        • Rocchi M.
        • Anvret M.
        • Ozcelik T.
        • Francke U.
        • et al.
        Rett syndrome: exclusion mapping following the hypothesis of germinal mosaicism for new X-linked mutations.
        Hum Genet. 1991; 86: 604-606
        • Ellison K.A.
        • Fill C.P.
        • Terwilliger J.
        • DeGennaro L.J.
        • Martin-Gallardo A.
        • Anvret M.
        • et al.
        Examination of X chromosome markers in Rett syndrome: exclusion mapping with a novel variation on multilocus linkage analysis.
        Am J Hum Genet. 1992; 50: 278-287
        • Curtis A.R.
        • Headland S.
        • Lindsay S.
        • Thomas N.S.
        • Boye E.
        • Kamakari S.
        • et al.
        X chromosome linkage studies in familial Rett syndrome.
        Hum Genet. 1993; 90: 551-555
        • Wan M.
        • Francke U.:.
        Evaluation of two X chromosomal candidate genes for Rett syndrome: glutamate dehydrogenase-2 (GLUD2) and rab GDP-dissociation inhibitor (GDI1).
        Am J Med Genet. 1998; 78: 169-172
        • Amir R.
        • Dahle E.J.
        • Toriolo D.
        • Zoghbi H.Y.
        Candidate gene analysis in Rett syndrome and the identification of 21 SNPs in Xq.
        Am J Med Genet. 2000; 90: 69-71
        • D'Esposito M.
        • Quaderi N.A.
        • Ciccodicola A.
        • Bruni P.
        • Esposito T.
        • D'Urso M.
        • et al.
        Isolation, physical mapping, and northern analysis of the X-linked human gene encoding methyl CpG-binding protein, MECP2.
        Mamm Genome. 1996; 7: 533-535
        • Coy J.F.
        • Sedlacek Z.
        • Bachner D.
        • Delius H.
        • Poustka A.
        A complex pattern of evolutionary conservation and alternative polyadenylation within the long 3′-untranslated region of the methyl-CpG-binding protein 2 gene (MeCP2) suggests a regulatory role in gene expression.
        Hum Mol Genet. 1999; 8: 1253-1262
        • Reichwald K.
        • Thiesen J.
        • Wiehe T.
        • Weitzel J.
        • Poustka W.A.
        • Rosenthal A.
        • et al.
        Comparative sequence analysis of the MECP2-locus in human and mouse reveals new transcribed regions.
        Mamm Genome. 2000; 11: 182-190
        • Jones P.L.
        • Veenstra G.J.
        • Wade P.A.
        • Vermaak D.
        • Kass S.U.
        • Landsberger N.
        • et al.
        Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.
        Nat Genet. 1998; 19: 187-191
        • Nan X.
        • Ng H.H.
        • Johnson C.A.
        • Laherty C.D.
        • Turner B.M.
        • Eisenman R.N.
        • et al.
        Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.
        Nature. 1998; 393: 386-389
        • Lewis J.D.
        • Meehan R.R.
        • Henzel W.J.
        • Maurer-Fogy I.
        • Jeppesen P.
        • Klein F.
        • et al.
        Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA.
        Cell. 1992; 69: 905-914
        • Bird A.P.
        • Wolffe A.P.
        Methylation-induced repression–belts, braces, and chromatin.
        Cell. 1999; 99: 451-454
        • Hendrich B.
        • Bird A.
        Identification and characterization of a family of mammalian methyl-CpG binding proteins.
        Mol Cell Biol. 1998; 18: 6538-6547
        • Bestor T.H.
        • Verdine G.L.
        DNA methyltransferases.
        Curr Opin Cell Biol. 1994; 6: 380-389
        • Li E.
        • Bestor T.H.
        • Jaenisch R.
        Targeted mutation of the DNA methyltransferase gene results in embryonic lethality.
        Cell. 1992; 69: 915-926
        • Okano M.
        • Bell D.W.
        • Haber D.A.
        • Li E.:.D.N.A.
        methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.
        Cell. 1999; 99: 247-257
        • Amir R.E.
        • Van den Veyver I.B.
        • Wan M.
        • Tran C.Q.
        • Francke U.
        • Zoghbi H.Y.
        Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.
        Nat Genet. 1999; 23: 185-188
        • Amir R.E.
        • Van den Veyver I.B.
        • Schultz R.
        • Malicki D.M.
        • Tran C.Q.
        • Dahle E.J.
        • et al.
        Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes.
        Ann Neurol. 2000; 47: 670-679
        • Wan M.
        • Lee S.S.
        • Zhang X.
        • Houwink-Manville I.
        • Song H.R.
        • Amir R.E.
        • et al.
        Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG Hotspots.
        Am J Hum Genet. 1999; 65: 1520-1529
        • Cooper D.N.
        • Krawczak M.
        Human Gene Mutation. BIOS Scientific Publishers Limited, Oxford1993
        • Bienvenu T.
        • Carrie A.
        • de Roux N.
        • Vinet M.C.
        • Jonveaux P.
        • Couvert P.
        • et al.
        MECP2 mutations account for most cases of typical forms of rett syndrome.
        Hum Mol Genet. 2000; 9: 1377-1384
        • Cheadle J.P.
        • Gill H.
        • Fleming N.
        • Maynard J.
        • Kerr A.
        • Leonard H.
        • et al.
        Long-read sequence analysis of the MECP2 gene in Rett syndrome patients: correlation of disease severity with mutation type and location.
        Hum Mol Genet. 2000; 9: 1119-1129
        • Huppke P.
        • Laccone F.
        • Kramer N.
        • Engel W.
        • Hanefeld F.
        Rett syndrome: analysis of MECP2 and clinical characterization of 31 patients.
        Hum Mol Genet. 2000; 9: 1369-1375
        • Nielsen J.
        • Friis K.
        • Hansen C.
        • Schwartz M.
        • Silahtaroglu A.N.
        • Tommerup N.
        High frequency of MECP2 mutations in Danish patients with Rett syndrome. European Human Genetics conference 2000. Amsterdam, The Netherlands. 2000: 620
        • Ballestar E.
        • Yusufzai T.M.
        • Wolffe A.P.
        Effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA.
        Biochemistry. 2000; 39: 7100-7106
        • Walsh C.P.
        • Bestor T.H.
        Cytosine methylation and mammalian development.
        Genes Dev. 1999; 13: 26-34
        • Stancheva I.
        • Meehan R.R.
        Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos.
        Genes Dev. 2000; 14: 313-327
        • Armstrong D.A.
        The Rett Syndrome and the Developing Brain.
        in: Kerr A. Witt Engerstrom I. Oxford University Press, 2001: In Press
        • Nan X.
        • Tate P.
        • Li E.
        • Bird A.
        DNA methylation specifies chromosomal localization of MeCP2.
        Mol Cell Biol. 1996; 16: 414-421
        • Frischmeyer P.A.
        • Dietz H.C.
        Nonsense-mediated mRNA decay in health and disease.
        Hum Mol Genet. 1999; 8: 1893-1900