Advertisement

Functional analyses of MeCP2 mutations associated with Rett syndrome using transient expression systems

      Abstract

      Rett syndrome, an X-linked neurodevelopmental disorder, is a major cause of mental retardation in females. Recent genetic analyses have revealed that mutations in the methyl–CpG-binding protein gene encoding MeCP2 are associated with Rett syndrome. In this study, we used transient expression systems to investigate the functional significance of mutations seen in patients with Rett syndrome. Missense mutations in the methyl–CpG-binding domain were analyzed by the transfection in mouse L929 cells and Drosophila SL2 cells. The L929 cells were utilized to investigate the effects of mutations on the affinity for heterochromatin, where methylated CpG dinucleotides are extremely enriched. The SL2 cells were utilized to analyze their effects on transcriptional repression activities. R106W and F155S mutations led to the substantial impairment of MeCP2 functions, showing the loss of accumulation of the mutated protein to mouse heterochromatin and the reduction of the transcriptional repressive activity in Drosophila SL2 cells. Intriguingly, the R133C mutant retained the functionality equivalent to MeCP2 in these analyses. On the other hand, the T158M mutation exhibited the intermediate level of the impairment of functions in both analyses. Thus, these functional assays are useful to evaluate the consequences of mutation in the methyl–CpG-binding domain of MeCP2 and provide an insight into the relationship between the genotype and the severity of Rett syndrome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rett A.
        Uber ein eigenartiges hirnatrophisches Syndrom bei Hyper-ammonamie im Kindesalter.
        Wien Med Wochenschr. 1966; 116: 723-738
        • Hagberg B.
        Rett's syndrome: prevalence and impact on progressive severe mental retardation in girls.
        Acta Paediatr Scand. 1985; 74: 405-408
        • Hagberg B.
        • Aicardi J.
        • Dias K.
        • Ramos O.
        A progressive syndrome of autism, dementia, ataxia and loss of purposeful hand use in girls: Rett's syndrome; report of 35 cases.
        Ann Neurol. 1983; 14: 471-479
        • Engerstrom I.W.
        • Forslund M.
        Mother and daughter with Rett syndrome.
        Dev Med Child Neurol. 1992; 34: 1022-1023
        • Schanen C.
        • Francke U.
        A severely affected male born into a Rett syndrome kindred supports X-linked inheritance and allows extension of the exclusion map.
        Am J Hum Genet. 1998; 63: 267-269
        • Amir R.E.
        • Van den Veyver I.B.
        • Wan M.
        • Tran C.Q.
        • Francke U.
        • Zoghbi H.Y.
        Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl–CpG-binding protein 2.
        Nat Genet. 1999; 23: 185-188
        • Lewis J.D.
        • Meehan R.R.
        • Henzel W.J.
        • Maurer-Fogy I.
        • Jeppesen P.
        • Klein F.
        • et al.
        Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA.
        Cell. 1992; 69: 905-914
        • Bartolomei M.S.
        • Tilghman S.M.
        Genomic imprinting in mammals.
        Annu Rev Genet. 1997; 31: 493-525
        • Heard E.
        • Clerc P.
        • Avner P.
        X-chromosome inactivation in mammals.
        Annu Rev Genet. 1997; 31: 571-610
        • Kudo S.
        • Fukuda M.
        Tissue-specific transcriptional regulation of human leukosialin (CD43) gene is achieved by DNA methylation.
        J Biol Chem. 1995; 270: 13298-13302
        • Lu S.
        • Davies P.J.A.
        Regulation of the expression of the tissue transglutaminase gene by DNA methylation.
        Proc Natl Acad Sci USA. 1997; 94: 4692-4697
        • Nourrit F.
        • Coquilleau I.
        • D'Andon M.F.
        • Rougeon F.
        • Doyen N.
        Methylation of the promoter region may be involved in tissue-specific expression of the mouse terminal deoxynucleotidyl transferase gene.
        J Mol Biol. 1999; 292: 217-227
        • Jones P.A.
        • Laird P.W.
        Cancer epigenetics comes of age.
        Nat Genet. 1999; 21: 163-167
        • Nan X.
        • Campoy F.J.
        • Bird A.
        MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin.
        Cell. 1997; 88: 471-481
        • Kudo S.
        Methyl–CpG-binding protein MeCP2 represses Sp1-activated transcription of the human leukosialin gene when the promoter is methylated.
        Mol Cell Biol. 1998; 18: 5492-5499
        • Nan X.
        • Meehan R.R.
        • Bird A.
        Dissection of the methyl–CpG binding domain from the chromosome protein MeCP2.
        Nucleic Acids Res. 1993; 21: 4886-4892
        • Nan X.
        • Ng H.H.
        • Johnson C.A.
        • Laherty C.D.
        • Turner B.M.
        • Eisenman R.N.
        • et al.
        Transcriptional repression by the methyl–CpG-binding protein MeCP2 involves a histone deacetylase complex.
        Nature. 1998; 393: 386-389
        • Jones P.L.
        • Veenstra G.J.
        • Wade P.A.
        • Vermaak D.
        • Kass S.U.
        • Landsberger N.
        • et al.
        Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.
        Nat Genet. 1998; 19: 187-189
        • Tate P.
        • Skarnes W.
        • Bird A.
        The methyl–CpG binding protein MeCP2 is essential for embryonic development in the mouse.
        Nat Genet. 1996; 12: 205-208
        • Schanen N.C.
        • Kurczynski T.W.
        • Brunnelle D.
        • Woodcock M.M.
        • Dure 4th, L.S.
        • Percy A.K.
        Neonatal encephalopathy in two boys in families with recurrent Rett syndrome.
        J Child Neurol. 1998; 13: 229-231
        • Wan M.
        • Lee S.S.J.
        • Zhang X.
        • Houwink-Manville I.
        • Song H.-R.
        • Amir R.E.
        • et al.
        Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots.
        Am J Hum Genet. 1999; 65: 1520-1529
        • Ho S.N.
        • Hunt H.D.
        • Horton R.M.
        • Pullen J.K.
        • Pease L.R.
        Site-directed mutagenesis by overlap extension using the polymerase chain reaction.
        Gene. 1989; 77: 51-59
        • Kudo S.
        • Fukuda M.
        A short, novel promoter sequence confers the expression of human leukosialin, a major sialoglycoprotein on leukocytes.
        J Biol Chem. 1991; 266: 8483-8489
        • Kudo S.
        • Fukuda M.
        Transcriptional activation of human leukosialin (CD43) gene by Sp1 through binding to a GGGTGG motif.
        Eur J Biochem. 1994; 223: 319-327
        • Fujita N.
        • Takebayashi S.
        • Okumura K.
        • Kudo S.
        • Chiba T.
        • Saya H.
        • et al.
        Methylation-mediated transcriptional silencing in euchromatin by methyl–CpG binding protein MBD1 isoforms.
        Mol Cell Biol. 1999; 19: 6415-6426
        • Fujita N.
        • Shimotake N.
        • Ohki I.
        • Chiba T.
        • Saya H.
        • Shirakawa M.
        • et al.
        Mechanism of transcriptional regulation by methyl–CpG binding protein MBD1.
        Mol Cell Biol. 2000; 20: 5107-5118
        • Miller L.L.
        • Schnoedl W.
        • Allen J.
        • Erlanger B.F.
        5-Methylcytosine localised in mammalian constitutive heterochromatin.
        Nature. 1974; 251: 636-637
        • Nan X.
        • Tate P.
        • Li E.
        • Bird A.
        DNA methylation specifies chromosomal localization of MeCP2.
        Mol Cell Biol. 1996; 16: 414-421
        • Urieli-Shoval S.
        • Gruenbaum Y.
        • Sedat J.
        • Razin A.
        The absence of detectable methylated bases in Drosophila melanogaster DNA.
        FEBS Lett. 1982; 146: 148-152
        • Courey A.J.
        • Tjian R.
        Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif.
        Cell. 1988; 55: 887-898
        • Xu A.
        • Kudo S.
        • Fukuda M.
        A novel expression vector composed of a regulatory element of the human leukosialin-encoding gene in different types of mammalian cells.
        Gene. 1997; 160: 283-286
        • Hung M.S.
        • Karthikeyan N.
        • Huang B.
        • Koo H.C.
        • Kiger J.
        • Shen C.K.J.
        Drosophila proteins related to vertebrate DNA (5-cytosine) methyltransferases.
        Proc Natl Acad Sci USA. 1999; 96: 11940-11945
        • Tweedie S.
        • Ng H.H.
        • Barlow A.L.
        • Turner B.M.
        • Hendrich B.
        • Bird A.
        Vestiges of a DNA methylation system in Drosophila melanogaster.
        Nat Genet. 1999; 23: 389-390
        • Wade P.A.
        • Gegonne A.
        • Jones P.L.
        • Ballestar E.
        • Aubry F.
        • Wolffe A.P.
        Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation.
        Nat Genet. 1999; 23: 62-66
        • Roder K.
        • Hung M.-S.
        • Lee T.-L.
        • Lin T.-Y.
        • Xiao H.
        • Isobe K.-I.
        • et al.
        Transcriptional repression by Drosophila methyl–CpG-binding proteins.
        Mol Cell Biol. 2000; 20: 7401-7409
        • Hendrich B.
        • Bird A.
        Identification and characterization of a family of mammalian methyl–CpG binding proteins.
        Mol Cell Biol. 1998; 18: 6538-6547
        • Wakefield R.I.D.
        • Smith B.O.
        • Nan X.
        • Free A.
        • Soteriou A.
        • Uhrin D.
        • et al.
        The solution structure of the domain from MeCP2 that binds to methylated DNA.
        J Mol Biol. 1999; 291: 1055-1065
        • Weitzel J.M.
        • Buhrmester H.
        • Stratling W.H.
        Chicken MAR-binding protein ARBP is homologous to rat methyl–CpG-binding protein MeCP2.
        Mol Cell Biol. 1997; 17: 5656-5666
        • Ohki I.
        • Shimotake N.
        • Fujita N.
        • Nakao M.
        • Shirakawa M.
        Solution structure of the methyl–CpG-binding domain of the methylation-dependent transcriptional repressor MBD1.
        EMBO J. 1999; 18: 6653-6661
        • Ballestar E.
        • Yusufzai T.M.
        • Wolffe A.P.
        Effects of Rett syndrome mutations of the methyl–CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA.
        Biochemistry. 2000; 39: 7100-7106
        • Chandler S.P.
        • Guschin D.
        • Landsberger N.
        • Wolffe A.P.
        The methyl–CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA.
        Biochemistry. 1999; 38: 7008-7018
        • Orrico A.
        • Lam C.-W.
        • Galli L.
        • Dotti M.T.
        • Hayek G.
        • Tong S.-F.
        • et al.
        MECP2 mutation in male patients with non-specific X-linked mental retardation.
        FEBS Lett. 2000; 481: 285-288