Advertisement
Original article| Volume 23, ISSUE 8, P805-809, December 2001

Physical condition of preterm infants with periventricular leukomalacia

      Abstract

      The aim of this study is to determine the general condition of preterm infants with severe brain lesions and to compare it with that of normal preterm infants. The Score for Neonatal Acute Physiology (SNAP) was calculated in nine preterm infants with periventricular leukomalacia (PVL) whose initial electroencephalograms showed grade IV depression (PVL group), 18 preterm infants who did not require mechanical ventilation during the neonatal period, Spontaneous respiration (SR group), and 18 preterm infants who required mechanical ventilation (MV group). The sum of the following four items in SNAP was separately calculated and called the ‘lung score’: PaO2, PaO2/FiO2 ratio, PaCO2, and oxygenation index. In addition to SNAP, we evaluated some neonatal variables. SNAP is lower in the SR group than in the PVL (P<0.05) or MV (P<0.01) groups. The lung score was also lower in the SR group than in the PVL (P<0.05) or MV (P<0.01) groups. On the other hand, the residual score (SNAP minus lung score) was not significantly different among the three groups. The physical condition of infants with PVL was not poor, although respiratory distress was often observed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fujimoto S.
        • Togari H.
        • Takashima S.
        • Funato M.
        • Yoshioka H.
        • Ibara S.
        • Tatsuno M.
        National survey of periventricular leukomalacia in Japan.
        Acta Paediatr Japan. 1998; 40: 239-243
        • Perlman J.M.
        • Risser R.
        • Broyles R.S.
        Bilateral cystic periventricular leukomalacia in the premature infant: associated risk factors.
        Pediatrics. 1996; 97: 822-827
        • Pierrat V.
        • Duquennoy C.
        • van Haastert I.C.
        • Ernst M.
        • Guilley N.
        • de Vries L.S.
        Ultrasound diagnosis and neurodevelopmental outcome of localised and extensive cystic periventricular leukomalacia.
        Arch Dis Child Fetal Neonatal Ed. 2001; 84: F151-F156
        • Zupan V.
        • Gonzalez P.
        • Lacaze-Masmonteil T.
        • Boithias C.
        • d'Allest A.M.
        • Dehan M.
        • Gabilan J.C.
        Periventricular leukomalacia: risk factors revisited.
        Dev Med Child Neurol. 1996; 38: 1061-1067
        • Trounce J.Q.
        • Shaw D.E.
        • Levene M.I.
        • Rutter N.
        Clinical risk factors and periventricular leukomalacia.
        Arch Dis Child. 1988; 63: 17-22
        • Tsuji M.
        • Saul P.
        • Du Plessis A.
        • Eichenwald E.
        • Sobh J.
        • Crocker R.
        • et al.
        Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill preterm infants.
        Pediatrics. 2000; 106: 625-632
        • Wiswell T.E.
        • Graziani L.J.
        • Kornhauser M.S.
        • Stanley C.
        • Merton D.A.
        • McKee L.
        • Spitzer A.R.
        Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high-frequency jet ventilation.
        Pediatrics. 1996; 98: 918-924
        • Trounce J.Q.
        • Shaw D.E.
        • Levene M.I.
        • Rutter N.
        Clinical risk factors and periventricular leukomalacia.
        Arch Dis Child. 1988; 63: 17-22
        • Perlman J.M.
        • Risser R.
        Relationship of uric acid concentrations and severe intraventricular hemorrhage/leukomalacia in the premature infant.
        J Pediatr. 1998; 132: 436-439
        • Kuban K.C.K.
        White-matter disease of prematurity, periventricular leukomalacia, and ischemic lesions.
        Dev Med Child Neurol. 1998; 40: 571-573
        • Murphy D.J.
        • Squier M.V.
        • Hope P.L.
        • Sellers S.
        • Johnson A.
        Clinical associations and time of onset of cerebral white matter damage in very preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 1996; 75: F27-F32
        • Takashima S.
        • Tanaka K.
        Development of the cerebrovascular architecture and its relationship to periventricular leukomalacia.
        Arch Neurol. 1978; 35: 11-16
        • Low J.A.
        • Froese A.F.
        • Galbraith R.S.
        • Sauerbrei E.E.
        • McKinven J.P.
        • Karchmar E.J.
        The association of fetal and newborn metabolic acidosis with severe periventricular leukomalacia in the preterm newborn.
        Am J Obstet Gynecol. 1990; 162: 977-982
        • Richardson D.K.
        • Gray J.E.
        • McCormick M.C.
        • Workman K.
        • Goldmann D.A.
        Score for neonatal acute physiology: a physiologic severity index for neonatal intensive care.
        Pediatrics. 1993; 91: 617-623
        • Pollack M.M.
        • Koch M.A.
        • Bartel D.A.
        • Rapoport I.
        • Dhanireddy R.
        • El-Mohandes A.A.E.
        • et al.
        A comparison of neonatal mortality risk prediction models in very low birth weight infants.
        Pediatrics. 2000; 105: 1051-1057
        • Richardson D.K.
        • Phibbs C.S.
        • Gray J.E.
        • McCormick M.C.
        • Workman-Daniels K.
        • Goldmann D.A.
        Birth weight and illness severity: independent predictors of neonatal mortality.
        Pediatrics. 1993; 91: 969-975
        • Watanabe K.
        • Hayakawa F.
        • Okumura A.
        Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants.
        Brain Dev. 1999; 21: 361-372
        • Motulsky H.
        Intuitive biostatistics. Oxford University Press, New York1995
        • Watanabe K.
        • Miyazaki S.
        • Hara K.
        • Hakamada S.
        Behavioral state cycles, background EEGs and prognosis of newborns with perinatal hypoxia.
        Electroenceph clin Neurophysiol. 1980; 49: 618-625
        • Whitsett J.A.
        • Pryhuber G.S.
        • Rice W.R.
        • Warner B.B.
        • Wert S.E.
        Acute respiratory disorders.
        in: Avery G.B. Fletcher M.A. MacDonald M.G. Neonatology, pathophysiology and management of the newborn. 5th ed. Lippincott, Williams and Wilkins, Philadelphia, PA1999: 485-508
        • Martin-Ancel A.
        • Garcia-Alix A.
        • Gaya F.
        • Cabanas F.
        • Burgueros M.
        • Quero J.
        Multiple organ involvement in perinatal asphyxia.
        J Pediatr. 1995; 127: 786-793
        • Perlman J.M.
        • Tack E.D.
        • Martin T.
        • Shackelford G.
        • Amon E.
        Acute systemic organ injury in term infants after asphyxia.
        Am J Dis Child. 1989; 143: 617-620