Advertisement

Surgical treatment of West syndrome

  • Eishi Asano
    Affiliations
    Department of Pediatrics, Children's Hospital of Michigan and Detroit Medical Center, Wayne State University School of Medicine, Detroit, MI, USA

    Department of Neurology, Children's Hospital of Michigan and Detroit Medical Center, Wayne State University School of Medicine, Detroit, MI, USA
    Search for articles by this author
  • Diane C. Chugani
    Affiliations
    Department of Pediatrics, Children's Hospital of Michigan and Detroit Medical Center, Wayne State University School of Medicine, Detroit, MI, USA

    Department of Radiology, Children's Hospital of Michigan and Detroit Medical Center, Wayne State University School of Medicine, Detroit, MI, USA
    Search for articles by this author
  • Csaba Juhásza
    Search for articles by this author
  • Otto Muzik
    Affiliations
    Department of Pediatrics, Children's Hospital of Michigan and Detroit Medical Center, Wayne State University School of Medicine, Detroit, MI, USA

    Department of Radiology, Children's Hospital of Michigan and Detroit Medical Center, Wayne State University School of Medicine, Detroit, MI, USA
    Search for articles by this author
  • Harry T. Chugani
    Correspondence
    Corresponding author. Pediatric Neurology/PET Center, Children's Hospital of Michigan, 3901 Beaubien Boulevard, Detroit, MI 48201, USA. Tel.: +1-313-993-2867; fax: +1-313-993-3845
    Affiliations
    Department of Pediatrics, Children's Hospital of Michigan and Detroit Medical Center, Wayne State University School of Medicine, Detroit, MI, USA

    Department of Neurology, Children's Hospital of Michigan and Detroit Medical Center, Wayne State University School of Medicine, Detroit, MI, USA

    Department of Radiology, Children's Hospital of Michigan and Detroit Medical Center, Wayne State University School of Medicine, Detroit, MI, USA
    Search for articles by this author

      Abstract

      The discovery of focal or multifocal cortical lesions using magnetic resonance imaging (MRI) and positron emission tomography (PET) scanning in the majority of infants with West syndrome has led to a surgical approach in the treatment of some patients with intractable infantile spasms. The locations of these lesions should be concordant with localization of focal ictal and/or interictal electroencephalographic (EEG) abnormalities prior to proceeding with cortical resection. When a single lesion is present on the MRI or PET, and there is good correlation with EEG localization, surgical treatment is generally quite favorable in terms of both seizure control and cognitive development. Interictal glucose metabolism PET scans in children with intractable cryptogenic infantile spasms show unifocal cortical hypometabolism in about 20% of cases. In the majority, however, multifocal asymmetric hypometabolism is suggestive of multifocal underlying lesions, possibly multifocal cortical dysplasia. When the pattern of glucose hypometabolism is symmetric, a lesional etiology is less likely, thus neurometabolic or neurogenetic disorders should be considered. Therefore, the pattern of glucose hypometabolism on PET in infants with intractable cryptogenic spasms is a useful guide to decide whether a medical or surgical approach should be undertaken. In order to achieve the best cognitive outcome with surgery, it is important to resect the entire ‘nociferous’ area rather than just the seizure focus. Our research with new PET imaging probes has attempted to provide a comprehensive evaluation of the epileptogenic zone including the ‘nociferous’ cortex. We have used [11C]flumazenil (FMZ), which labels gamma aminobutyric acidA (GABAA) receptors, and have found this to be particularly useful in showing: (i) decreased receptor binding with medial temporal involvement thus indicating resection of medial temporal structures, (ii) the peri-lesional epileptogenic zone surrounding MRI lesions, (iii) the seizure onset zone in MRI-negative cases, and (iv) potential secondary epileptic foci. Another recently developed PET probe, alpha[11C]methyl-l-tryptophan (AMT) which is a precursor for the serotonin and the kynurenine metabolism pathways, is capable of differentiating between epileptogenic and non-epileptogenic tubers in patients with tuberous sclerosis complex and intractable epilepsy (including infantile spasms). Subsequently, we have applied AMT PET in patients with multifocal cortical dysplasia to determine the predominant seizure focus, and the results have been promising with regard to seizure control but not cognitive development. Thus, the introduction of newer more specific PET probes for epilepsy has led to improved and more accurate localization of seizure foci that should ultimately improve outcome of epilepsy surgery in West syndrome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chugani H.T.
        • Shields W.D.
        • Shewmon D.A.
        • Olson D.M.
        • Phelps M.E.
        • Peacock W.J.
        Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment.
        Ann Neurol. 1990; 27: 406-413
        • Chugani H.T.
        • Shewmon D.A.
        • Shields W.D.
        • Sankar R.
        • Comair Y.
        • Vinters H.V.
        • et al.
        Surgery for intractable infantile spasms: neuroimaging perspectives.
        Epilepsia. 1993; 34: 764-771
        • Wyllie E.
        • Comair Y.G.
        • Kotagal P.
        • Raja S.
        • Ruggieri P.
        Epilepsy surgery in infants.
        Epilepsia. 1996; 37: 625-637
        • Kramer U.
        • Sue W.C.
        • Mikati M.A.
        Focal features in West syndrome indicating candidacy for surgery.
        Pediatr Neurol. 1997; 16: 213-217
        • Wyllie E.
        • Comair Y.G.
        • Kotagal P.
        • Bulacio J.
        • Bingaman W.
        • Ruggieri P.
        Seizure outcome after epilepsy surgery in children and adolescents.
        Ann Neurol. 1998; 44: 740-748
        • Duchowny M.
        The syndrome of partial seizures in infancy.
        J Child Neurol. 1992; 7: 66-69
        • Chugani H.T.
        • Shewmon D.A.
        • Peacock W.J.
        • Shields W.D.
        • Mazziotta J.C.
        • Phelps M.E.
        Surgical treatment of intractable neonatal-onset seizures: the role of positron emission tomography.
        Neurology. 1988; 38: 1178-1188
        • Gibbs E.L.
        • Fleming M.M.
        • Gibbs F.A.
        Diagnosis and prognosis of hypsarrhythmia and infantile spasms.
        Pediatrics. 1954; 13: 66-73
        • Lombroso C.T.
        A prospective study of infantile spasms: clinical and therapeutic correlations.
        Epilepsia. 1983; 24: 135-158
        • Hrachovy R.A.
        • Frost Jr, J.D.
        • Kellaway P.
        Hypsarrhythmia: variations on the theme.
        Epilepsia. 1984; 25: 317-325
        • Watanabe K.
        • Negoro T.
        • Aso K.
        • Matsumoto A.
        Reappraisal of interictal electroencephalograms in infantile spasms.
        Epilepsia. 1993; 34: 679-685
        • Holmes G.L.
        • Vigevano F.
        Infantile spasms.
        in: Engel Jr, J. Pedley T.A. Epilepsy: a comprehensive textbook. Philadelphia, PA, Lippincott-Raven1997: 627-642
        • Gaily E.K.
        • Shewmon D.A.
        • Chugani H.T.
        • Curran J.G.
        Asymmetric and asynchronous infantile spasms.
        Epilepsia. 1995; 36: 873-882
        • Fusco L.
        • Vigevano F.
        Ictal clinical electroencephalographic findings of spasms in West syndrome.
        Epilepsia. 1993; 34: 671-678
        • Dalla Bernardina B.
        • Colamaria V.
        • Capoville G.
        • Bondavalli S.
        Epileptic syndromes and cerebral malformations in infancy: multicenter study.
        Boll Lega Ital Epil. 1984; 45–46: 65-67
        • Carrazana E.J.
        • Lombroso C.T.
        • Mikati M.
        • Helmers S.
        • Holmes G.L.
        Facilitation of infantile spasms by partial seizures.
        Epilepsia. 1993; 34: 97-109
        • Otsubo H.
        • Steinlin M.
        • Shirasawa A.
        • Hwang P.A.
        • Munn R.
        • Jay V.
        • et al.
        Interhemispheric interactions analyzed by coherence during flexor spasms.
        Clin Neurophysiol. 1999; 110: 374-377
        • Panzica F.
        • Franceschetti S.
        • Binelli S.
        • Canafoglia L.
        • Granata T.
        • Avanzini G.
        Spectral properties of EEG fast activity ictal discharges associated with infantile spasms.
        Clin Neurophysiol. 1999; 110: 593-603
        • Taillibert S.
        • Oppenheim C.
        • Baulac M.
        • Dormont D.
        • Marsault C.
        • Cabanis E.A.
        • et al.
        Yield of fluid-attenuated inversion recovery in drug-resistant focal epilepsy with noninformative conventional magnetic resonance imaging.
        Eur Neurol. 1999; 41: 64-72
        • Asano E.
        • Chugani D.C.
        • Muzik O.
        • Shen C.
        • Juhász C.
        • Janisse J.
        • et al.
        Multimodality imaging for improved detection of epileptogenic foci in tuberous sclerosis complex.
        Neurology. 2000; 54: 1976-1984
        • Adelson P.D.
        • Peacock W.J.
        • Chugani H.T.
        • Comair Y.G.
        • Vinters H.V.
        • Shields W.D.
        • et al.
        Temporal and extended temporal resections for the treatment of intractable seizures in early childhood.
        Pediatr Neurosurg. 1992; 18: 169-178
        • Andermann F.
        Cortical dysplasias and epilepsy: a review of the architectonic, clinical, and seizure patterns.
        Adv Neurol. 2000; 84: 479-496
        • Pfund Z.
        • Chugani H.T.
        • Juhasz C.
        • Muzik O.
        • Behen M.E.
        • Chugani D.C.
        • et al.
        Lissencephaly: fetal pattern of glucose metabolism on positron emission tomography?.
        Neurology. 2000; 55: 1683-1688
        • Murakami J.W.
        • Weinberger E.
        • Shaw D.W.
        Normal myelination of the pediatric brain imaged with fluid-attenuated inversion-recovery (FLAIR) MR imaging.
        Am J Neuroradiol. 1999; 20: 1406-1411
        • Chugani D.C.
        • Chugani H.T.
        • Muzik O.
        • Shah J.R.
        • Shah A.K.
        • Canady A.
        • et al.
        Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-l-tryptophan positron emission tomography.
        Ann Neurol. 1998; 44: 858-866
        • Theodore W.H.
        • Dorwart R.
        • Holmes M.
        • Porter R.J.
        • DiChiro G.
        Neuroimaging in refractory partial seizures: comparison of PET, CT, and MRI.
        Neurology. 1986; 36: 750-759
        • Henry T.R.
        • Chugani H.T.
        • Abou-Khalil B.W.
        • Theodore W.H.
        • Swartz B.E.
        Positron emission tomography.
        in: Engel Jr, J. Surgical treatment of the epilepsies. 2nd ed. Raven Press, New York, NY1993: 211-243
        • Chugani H.T.
        • Conti J.R.
        Etiologic classification of infantile spasms in 140 cases: role of positron emission tomography.
        J Child Neurol. 1996; 11: 44-48
        • Chugani H.T.
        • Rintahaka P.J.
        • Shewmon D.A.
        Ictal patterns of cerebral glucose utilization in children with epilepsy.
        Epilepsia. 1994; 35: 813-822
        • Juhász C.
        • Chugani D.C.
        • Muzik O.
        • Watson C.
        • Shah J.
        • Shah A.
        • et al.
        Is epileptogenic cortex truly hypometabolic on interictal positron emission tomography?.
        Ann Neurol. 2000; 48: 88-96
        • Persson A.
        • Ehrin E.
        • Eriksson L.
        • Farde L.
        • Hedstrom C.G.
        • Litton J.E.
        • et al.
        Imaging of [11C]-labelled Ro 15-1788 binding to benzodiazepine receptors in the human brain by positron emission tomography.
        J Psychiatr Res. 1985; 19: 609-622
        • Savic I.
        • Thorell J.O.
        • Roland P.
        [11C]Flumazenil positron emission tomography visualizes frontal epileptogenic regions.
        Epilepsia. 1995; 36: 1225-1232
        • Juhász C.
        • Nagy F.
        • Muzik O.
        • Watson C.
        • Shah J.
        • Chugani H.T.
        [11C]Flumazenil PET in patients with epilepsy with dual pathology.
        Epilepsia. 1999; 40: 566-574
        • Levesque M.F.
        • Nakasato N.
        • Vinters H.V.
        • Babb T.L.
        Surgical treatment of limbic epilepsy associated with extrahippocampal lesions: the problem of dual pathology.
        J Neurosurg. 1991; 75: 364-370
        • Raymond A.A.
        • Fish D.R.
        • Stevens J.M.
        • Cook M.J.
        • Sisodiya S.M.
        • Shorvon S.D.
        Association of hippocampal sclerosis with cortical dysgenesis in patients with epilepsy.
        Neurology. 1994; 44: 1841-1845
        • Lawn N.
        • Londono A.
        • Sawrie S.
        • Morawetz R.
        • Martin R.
        • Gilliam F.
        • et al.
        Occipitoparietal epilepsy, hippocampal atrophy, and congenital developmental abnormalities.
        Epilepsia. 2000; 41: 1546-1553
        • Vernet O.
        • Farmer J.P.
        • Montes J.L.
        • Villemure J.G.
        • Meagher-Villemure K.
        Dysgenetic mesial temporal sclerosis: an unrecognized entity.
        Childs Nerv Syst. 2000; 16: 719-723
        • Koepp M.J.
        • Richardson M.P.
        • Labbe C.
        • Brooks D.J.
        • Cunningham V.J.
        • Ashburner J.
        • et al.
        11C-flumazenil PET, volumetric MRI, and quantitative pathology in mesial temporal lobe epilepsy.
        Neurology. 1997; 49: 764-773
        • Muzik O.
        • da Silva E.A.
        • Juhász C.
        • Chugani D.C.
        • Shah J.
        • Nagy F.
        • et al.
        Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy.
        Neurology. 2000; 54: 171-179
        • Juhász C.
        • Chugani D.C.
        • Muzik O.
        • Shah A.
        • Shah J.
        • Watson C.
        • et al.
        Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome.
        Neurology. 2001; 56: 1650-1658
        • Juhász C.
        • Chugani D.C.
        • Muzik O.
        • Watson C.
        • Shah J.
        • Shah A.
        • et al.
        Electroclinical correlates of flumazenil and fluorodeoxyglucose PET abnormalities in lesional epilepsy.
        Neurology. 2000; 55: 825-835
        • Asano E.
        • Chugani D.C.
        • Juhász C.
        • Muzik O.
        • Philip S.
        • Shah J.
        • et al.
        Epileptogenic zones in tuberous sclerosis complex: subdural EEG versus MRI and FDG PET.
        Epilepsia. 2000; 41: 128
        • Savic I.
        • Blomqvist G.
        • Halldin C.
        • Litton J.E.
        • Gulyas B.
        Regional increases in [11C]flumazenil binding after epilepsy surgery.
        Acta Neurol Scand. 1998; 97: 279-286
        • Juhász C.
        • Chugani D.C.
        • Muzik O.
        • Watson C.
        • Shah J.
        • Shah A.
        • et al.
        Relationship between EEG and positron emission tomography abnormalities in clinical epilepsy.
        J Clin Neurophysiol. 2000; 17: 29-42
        • Rintahaka P.J.
        • Chugani H.T.
        Clinical role of positron emission tomography in children with tuberous sclerosis complex.
        J Child Neurol. 1997; 12: 42-52
        • Juhász C.
        • Chugani D.C.
        • Muzik O.
        • Shah A.
        • Shah J.
        • Chugani H.T.
        Role of alpha[11C]methyl-l-tryptophan PET in localization of epileptic foci in intractable partial epilepsy.
        Neurology. 2001; 56: A256
        • Diksic M.
        • Nagahiro S.
        • Sourkes T.L.
        • Yamamoto Y.L.
        A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model.
        J Cereb Blood Flow Metab. 1990; 10: 1-12
        • Muzik O.
        • Chugani D.C.
        • Chakraborty P.
        • Mangner T.
        • Chugani H.T.
        Analysis of [C-11]alpha-methyl-tryptophan kinetics for the estimation of serotonin synthesis rate in vivo.
        J Cereb Blood Flow Metab. 1997; 17: 659-669
        • Chugani D.C.
        • Muzik O.
        • Chakraborty P.
        • Mangner T.
        • Chugani H.T.
        Human brain serotonin synthesis capacity measured in vivo with alpha-[C-11]methyl-l-tryptophan.
        Synapse. 1998; 28: 33-43
        • Yamazaki F.
        • Kuroiwa T.
        • Takikawa O.
        • Kido R.
        Human indolylamine 2,3-dioxygenase. Its tissue distribution, and characterization of the placental enzyme.
        Biochem J. 1985; 230: 635-638
        • Chugani D.C.
        • Heyes M.P.
        • Kuhn D.M.
        • Chugani H.T.
        Evidence α[C-11]methyl-l-tryptophan PET traces tryptophan metabolism via the kynurenine pathway in tuberous sclerosis complex.
        Soc Neurosci Abstr. 1998; 24: 1757
        • Lapin I.P.
        Convulsant action of intracerebroventricularly administered l-kynurenine sulphate, quinolinic acid and other derivatives of succinic acid, and effects of amino acids: structure–activity relationships.
        Neuropharmacology. 1982; 21: 1227-1233
        • Perkins M.N.
        • Stone T.W.
        An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid.
        Brain Res. 1982; 247: 184-187
        • Schwarcz R.
        • Brush G.S.
        • Foster A.C.
        • French E.D.
        Seizure activity and lesions after intrahippocampal quinolinic acid injection.
        Exp Neurol. 1984; 84: 1-17
        • Feldblum S.
        • Rougier A.
        • Loiseau H.
        • Loiseau P.
        • Cohadon F.
        • Morselli P.L.
        • et al.
        Quinolinic-phosphoribosyl transferase activity is decreased in epileptic human brain tissue.
        Epilepsia. 1988; 29: 523-529
        • Villemure J.G.
        Anatomical to functional hemispherectomy from Krynauw to Rasmussen.
        Epilepsy Res. 1992; 5: 209-215
        • Mittal S.
        • Farmer J.P.
        • Rosenblatt B.
        • Andermann F.
        • Montes J.L.
        • Villemure J.G.
        Intractable epilepsy after a functional hemispherectomy: important lessons from an unusual case. Case report.
        J Neurosurg. 2001; 94: 510-514
        • Olson D.M.
        • Chugani H.T.
        • Shewmon D.A.
        • Phelps M.E.
        • Peacock W.J.
        Electrocorticographic confirmation of focal positron emission tomographic abnormalities in children with intractable epilepsy.
        Epilepsia. 1990; 31: 731-739
        • Duchowny M.S.
        • Resnick T.J.
        • Alvarez L.A.
        • Morrison G.
        Focal resection for malignant partial seizures in infancy.
        Neurology. 1990; 40: 980-984
        • Joshi C.N.
        • Shah A.
        • Asano E.
        • Juhász C.
        • Canady A.
        • Watson C.
        • et al.
        Multimodal localization of the sensorimotor cortex in pediatric epilepsy surgery patients.
        Neurology. 2001; 56: A390-A391
        • Luders H.
        • Lesser R.P.
        • Hahn J.
        • Dinner D.S.
        • Klem G.
        Cortical somatosensory evoked potentials in response to hand stimulation.
        J Neurosurg. 1983; 58: 885-894
        • Luders H.
        • Lesser R.P.
        • Dinner D.S.
        • Morris H.H.
        • Wyllie E.
        • Godoy J.
        Localization of cortical function: new information from extraoperative monitoring of patients with epilepsy.
        Epilepsia. 1988; 29: 56-65
        • Berger M.S.
        • Cohen W.A.
        • Ojemann G.A.
        Correlation of motor cortex brain mapping data with magnetic resonance imaging.
        J Neurosurg. 1990; 72: 383-387
        • Yousry T.A.
        • Schmid U.D.
        • Alkadhi H.
        • Schmidt D.
        • Peraud A.
        • Buettner A.
        • et al.
        Localization of the motor hand area to a knob on the precentral gyrus. A new landmark.
        Brain. 1997; 120: 141-157
        • Kumabe T.
        • Nakasato N.
        • Inoue T.
        • Yoshimoto T.
        Primary thumb sensory cortex located at the lateral shoulder of the inverted omega-shape on the axial images of the central sulcus.
        Neurol Med Chir. 2000; 40: 393-401
        • Olivier A.
        Surgery of extratemporal epilepsy.
        in: Wyllie E. The treatment of epilepsy: principles and practice. 2nd ed. Williams and Wilkins, Baltimore, MD1996: 1060-1073
        • Polkey C.E.
        Physical complications of epilepsy surgery.
        in: Oxbury J. Polkey C. Duchowny M. Intractable focal epilepsy. W.B. Saunders, London2000: 784-794
        • Duchowny M.
        • Jayakar P.
        Functional cortical mapping in children.
        Adv Neurol. 1993; 63: 149-154
        • Pinard J.M.
        • Delalande O.
        • Chiron C.
        • Soufflet C.
        • Plouin P.
        • Kim Y.
        • et al.
        Callosotomy for epilepsy after West syndrome.
        Epilepsia. 1999; 40: 1727-1734
        • Asarnow R.F.
        • LoPresti C.
        • Guthrie D.
        • Elliott T.
        • Cynn V.
        • Shields W.D.
        • et al.
        Developmental outcomes in children receiving resection surgery for medically intractable infantile spasms.
        Dev Med Child Neurol. 1997; 39: 430-440
        • Riikonen R.
        A long-term follow-up study of 214 children with the syndrome of infantile spasms.
        Neuropediatrics. 1982; 13: 14-23
        • Fejerman N.
        • Cersosimo R.
        • Caraballo R.
        • Grippo J.
        • Corral S.
        • Martino R.H.
        • et al.
        Vigabatrin as a first-choice drug in the treatment of West syndrome.
        J Child Neurol. 2000; 15: 161-165