Advertisement

Progressive neuronal loss in the ventral posterior lateral and medial nuclei of thalamus in Niemann–Pick disease type C mouse brain

      Abstract

      Niemann–Pick disease type C (NP-C) disease is a progressive and fatal neurological disorder characterized by accumulation of cholesterol and glycosphingolipids in peripheral tissues and that of glycosphingolipids in the brain. A C57BL/KsJ-npc1spm mutant strain is a genetically authentic model of NP-C. This study investigated neuronal cell loss and lipid accumulation in the npc1spm mouse brain. Nissl-staining revealed abundant swollen neurons in the neocortex, piriform cortex, hippocampus and basal ganglia at 3–4 wk of age. In addition to loss of the Purkinje cells, we found a conspicuous cell loss in the ventral posterial lateral (VPL) and medial (VPM) nuclei of thalamus, which became apparent after 4–5 wk. Biochemical analyses revealed no increase of cholesterol in the lipid extracts whereas a substantial accumulation of cholesterol was detectable in most of the large neurons by filipin staining in the brain of homozygous mice. In contrast to the diffuse staining pattern in normal brains, the neuropils of the neurons in the brain of homozygous mice were stained in a punctate pattern. The ubiquitous accumulation excludes a direct role of cholesterol in the progressive neuronal loss in the Purkinje cell layer and in the VPL and VPM of the thalamus.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pentchev P.G.
        • Vanier M.T.
        • Suzki K.
        • Patterson M.C.
        Niemann–Pick disease type C.
        in: Scrver C.R. Beaudet A.J. Sly W.S. Valle D. The metabolic and molecular bases of inherited disease. McGraw-Hill, New York1995: 2625-2639
        • Vanier M.T.
        • Suzuki K.
        Recent advances in elucidating of Niemann–Pick C disease.
        Brain Pathol. 1998; 8: 163-174
        • Miyawaki S.
        • Mitsuoka S.
        • Sakiyama T.
        • Kitagawa T.
        Sphingomyelinosis, a new mutation in the mouse: a model of Niemann Pick disease in humans.
        J Hered. 1982; 73: 257-263
        • Miyawaki S.
        • Yoshida H.
        • Mitsuoka S.
        • Enomoto H.
        • Ikehara S.
        A mouse model for Niemann–Pick disease. Influence of genetic background on disease expression in spm/spm mice.
        J Hered. 1986; 77: 379-384
        • Carstea E.D.
        • Morris J.A.
        • Coleman K.G.
        • Loftus S.K.
        • Zhang D.
        • Cummings C.
        • et al.
        Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis.
        Science. 1997; 277: 228-231
        • Loftus S.K.
        • Morris J.A.
        • Carstea E.D.
        • Gu J.Z.
        • Cummings C.
        • Brown A.
        • et al.
        Murine model of Niemann–Pick C disease: mutation in a cholesterol homeostasis gene.
        Science. 1997; 277: 232-235
        • Akaboshi S.
        • Yano T.
        • Miyawaki S.
        • Ohno K.
        • Takeshita K.
        A C57BL/KsJ mouse model of Niemann–Pick disease (spm) belongs to the same complementation group as the major childhood type of Niemann–Pick disease type C.
        Hum Genet. 1997; 99: 350-353
        • Liscum L.
        • Klansek J.J.
        Niemann–Pick disease type C.
        Curr Opin Lipidol. 1998; 9: 131-135
        • Neufeld E.B.
        • Wastney M.
        • Patel S.
        • Suresh S.
        • Cooney A.M.
        • Dwyer N.K.
        • et al.
        The Niemann–Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo.
        J Biol Chem. 1999; 274: 9627-9635
        • Kobayashi T.
        • Beuchat M.H.
        • Lindsay M.
        • Frias S.
        • Palmiter R.D.
        • Sakuraba H.
        • et al.
        Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport.
        Nat Cell Biol. 1999; 1: 113-118
        • Cruz J.C.
        • Sugii S.
        • Yu C.
        • Chang T.Y.
        Role of Niemann–Pick type C1 protein in intracellular trafficking of low density lipoprotein derived-cholesterol.
        J Biol Chem. 2000; 275: 4013-4021
        • Tanaka J.
        • Nakamura H.
        • Miyawaki S.
        Cerebellar involvement in murine sphingomyelinosis: a new model of Niemann–Pick disease.
        J Neuropathol Exp Neurol. 1988; 47: 291-300
        • Ohno K.
        • Nanba E.
        • Miyawaki S.
        • Sakiyama T.
        • Kitagawa T.
        • Takeshita K.
        A cell line derived from sphingomyelinosis mouse shows alterations in intracellular cholesterol metabolism similar to those in type C Niemann–Pick disease.
        Cell Struct Funct. 1992; 17: 229-235
        • Koike T.
        • Ishida G.
        • Taniguchi M.
        • Higaki K.
        • Ayaki Y.
        • Saito M.
        • et al.
        Decreased membrane fluidity and unsaturated fatty acids in Niemann–Pick disease type C fibroblasts.
        Biochim Biophys Acta. 1998; 1406: 327-335
        • Tanaka J.
        • Miyawaki S.
        • Maeda N.
        • Mikoshiba K.
        Immunohistochemical expression of P400 protein in Purkinje cells of sphingomyelinosis mouse.
        Brain Dev. 1991; 13: 110-114
        • Franklin K.B.J.
        • Paxinos G.
        The mouse brain in stereotaxic coordinates. Academic Press, San Diego1997
        • Higashi Y.
        • Murayama S.
        • Pentchev P.G.
        • Suzuki K.
        Cerebellar degeneration in the Niemann–Pick type C mouse.
        Acta Neuropathol. 1993; 85: 175-184
        • Elleder M.
        • Jirasek A.
        • Smid F.
        • Ledvinova J.
        • Besley G.T.
        Niemann–Pick disease type C. Study on the nature of the cerebral storage process.
        Acta Neuropathol. 1985; 66: 325-336
        • Suzuki K.
        • Parker C.C.
        • Pentchev P.G.
        • Katz D.
        • Ghetti B.
        • D'Agostino A.N.
        • et al.
        Neurofibrillary tangles in Niemann–Pick disease type C.
        Acta Neuropathol. 1995; 89: 227-238
        • Brown D.E.
        • Thrall M.A.
        • Walkley S.U.
        • Wenger D.A.
        • Mitchell T.W.
        • Smith M.O.
        • et al.
        Feline Niemann–Pick disease type C.
        Am J Pathol. 1994; 144: 1412-1415
        • Munana K.R.
        • Luttgen P.J.
        • Thrall M.A.
        • Mitchell T.W.
        • Wenger D.A.
        Neurological manifestations of Niemann–Pick disease type C in cats.
        J Vet Intern Med. 1994; 8: 117-121
        • March P.A.
        • Thrall M.A.
        • Brown D.E.
        • Metchell T.W.
        • Lowenthal A.C.
        • Walkley S.U.
        GABAergic neuroaxonal dystrophy and other cytopathological alterations in feline Niemann–Pick disease type C.
        Acta Neuropathol. 1997; 94: 164-172
        • Martin J.H.
        • Jessell T.M.
        Anatomy of the somatic sensory system.
        in: Kandel E.R. Schwartz J.H. Jessell T.M. Principles of neural science. Elsevier, New York1991: 353-384
        • Dodd J.
        • Kelly J.P.
        Trigeminal system.
        in: Kandel E.R. Schwartz J.H. Jessell T.M. Principles of neural science. Elsevier, New York1991: 701-710
        • Fink J.K.
        • Filling-Katz M.R.
        • Sokol J.
        • Cogan D.G.
        • Pikus A.
        • Sonies B.
        • et al.
        Clinical spectrum of Niemann–Pick disease type C.
        Neurology. 1989; 39: 1040-1049
      1. National Niemann–Pick disease foundation, inc. http://www.nnpdf/org/.

        • Philippart M.
        • Martin L.
        • Martin J.J.
        • Menkes J.H.
        Niemann–Pick disease. Morphologic and biochemical studies in the visceral form with late central nervous system involvement (Crocker's group C).
        Arch Neurol. 1969; 20: 227-238
        • Suzuki K.
        • Johnson A.B.
        • Merquet E.
        • Suzuki K.
        A case of juvenile lipidosis: electron microscopic, histochemical and biochemical studies.
        Acta Neuropathol. 1968; 11: 122-139
        • Vanier M.T.
        Biochemical studies in Niemann–Pick disease. I. Major sphingolipids of liver and spleen.
        Biochim Biophys Acta. 1983; 750: 178-184
        • Morris M.D.
        • Bhuvaneswaran C.
        • Shio H.
        • Fowler S.
        Lysosome lipid storage disorder in NCTR-BALB/c mice. I. Description of the disease and genetics.
        Am J Pathol. 1982; 108: 140-149
        • Tint G.S.
        • Pentchev P.G.
        • Xu G.
        • Batta A.K.
        • Shefer S.
        • Salen G.
        • et al.
        Cholesterol and oxygenated cholesterol concentrations are markedly elevated in peripheral tissue but not in brain from mice with the Niemann–Pick C phenotype.
        J Inherit Metab Dis. 1998; 21: 853-863
        • Elleder M.
        • Jirasek A.
        • Smid F.
        • Ledvinova J.
        • Besley G.T.
        Niemann–Pick disease type C. Study on the nature of the cerebral storage process.
        Acta Neuropathol. 1985; 66: 325-336
        • Liu Y.
        • Wu Y.P.
        • Wada R.
        • Neufeld E.B.
        • Mullin K.A.
        • Howard A.C.
        • et al.
        Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann–Pick C disease mouse.
        Hum Mol Genet. 2000; 9: 1087-1092
        • Xie C.
        • Burns D.K.
        • Turley S.D.
        • Dietschy J.M.
        Cholesterol is sequestered in the brains of mice with Niemann–Pick type C disease but turnover is increased.
        J Neuropathol Exp Neurol. 2000; 59: 1106-1117
        • Turley S.D.
        • Burns D.K.
        • Rosenfeld C.R.
        • Dietschey J.M.
        Brain does not utilize low density lipoprotein -cholesterol during fetal and neonatal development in the sheep.
        J Lipd Res. 1996; 37: 1953-1961
        • Turley S.D.
        • Dietschy J.M.
        Regional variation in cholesterol synthesis and low-density lipoprotein cholesterol in the brain of the fetus, newborn and adults animals.
        Nutr Metab Cardiovasc Res. 1997; 7: 195-201
        • Jurevics H.A.
        • Kidwai F.Z.
        • Morell P.
        Sources of cholesterol during development of the rat fetus and fetal organs.
        J Lipid Res. 1997; 38: 723-733
        • Pitas R.E.
        • Boyles J.K.
        • Lee S.H.
        • Foss D.
        • Mahley R.W.
        Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins.
        Biochim Biophys Acta. 1987; 917: 148-161
        • Weisgraber K.H.
        • Roses A.D.
        • Strittmatter W.J.
        The role of apolipoprotein E in the nervous system.
        Curr Opin Lipidol. 1994; 5: 110-116
        • Xie C.
        • Turley S.D.
        • Dietschy J.M.
        Cholesterol accumulation in tissues of the Niemann–Pick type C mouse is determined by the rate of lipoprotein-cholesterol uptake through the coated-pit pathway in each organ.
        Proc Natl Acad Sci USA. 1999; 96: 11992-11997
        • Henderson L.P.
        • Lin L.
        • Prasad A.
        • Paul C.A.
        • Chang T.Y.
        • Maue R.A.
        Embryonic striatal neurons from Niemann–Pick type C mice exhibit defects in cholesterol metabolism and neurotrophin responsiveness.
        J Biol Chem. 2000; 275: 20179-20187