Advertisement

Increased neurons containing neuronal nitric oxide synthase in the brain of a hypoxic-ischemic neonatal rat model

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      We evaluated the temporal profile of the number of neurons containing neuronal nitric oxide synthase (nNOS neurons) in the brain of a neonatal hypoxic-ischemic rat model. Hypoxic-ischemic insults were produced in the brains of 7-day-old rat pups using a combination of unilateral carotid artery ligation and hypoxic (8% oxygen) exposure. Sections of brain from rats killed at 0–24 h after the onset of hypoxia were stained immunohistochemically using a polyclonal anti-nNOS antibody. Histological changes of neuronal injury were evaluated in the adjacent Nissl stained sections. The number of nNOS neurons in the hemisphere ipsilateral to the carotid ligation was significantly increased (P < 0.05) at 3 h, when the neuronal injury consisted of clusters of degenerating hyperchromic neurons. Neuronal degeneration and an increased number of nNOS neurons were seen only in the ipsilateral hemisphere and the increase was most prominent in the dorsolateral area of the striatum. The increase in the number of nNOS neurons continued at 6 h, when the area of neuronal injury continued to expand. At 24 h, the neuronal injury was diffuse, and the number of nNOS neurons on the ipsilateral side significantly decreased. The increase of the number of nNOS neurons in the early phase of neonatal neuronal injury suggests its possible involvement in the hypoxicischemic injury. The delineation of its role in neuronal injury may lead to an improvement in managing neonatal hypoxic-ischemic brain injury.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brain and Development
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      Reference

        • McDonald J.W.
        • Johnston M.W.
        Physiological and pathophysiological roles of excitatory amino acids during central nervous system development.
        Brain Res Rev. 1990; 15: 41-70
        • Hagberg H.
        • Andersson P.
        • Kjellmer I.
        Extracellular overflow of glutamate, aspartate, GABA and taurine in the cortex and basal ganglia of fetal lambs during hypoxia-ischemia.
        Neurosci Lett. 1987; 78: 311-317
        • Andiné P.
        • Sandberg M.
        • Bågenholm R.
        Intra- and extracellular changes of amino acids in the cerebral cortex of the neonatal rat during hypoxic-ischemia.
        Dev Brain Res. 1991; 64: 115-120
        • Vannuci R.C.
        Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage.
        Pediatr Res. 1990; 27: 317-326
        • Dawson T.M.
        • Dawson V.L.
        • Snyder S.H.
        A novel neuronal messenger molecule in brain: The free radical, nitric oxide.
        Ann Neurol. 1992; 32: 297-311
        • Dawson V.L.
        • Dawson T.M.
        • Bartley D.A.
        • Uhl G.R.
        • Snyder S.H.
        Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures.
        J Neurosci. 1993; 13: 2651-2661
        • Nagafuji T.
        • Matsui T.
        • Koide T.
        • Asano T.
        Blockade of nitric oxide formation by Nω-nitro-l-arginine mitigates ischemic brain edema and subsequent cerebral infarction in rats.
        Neurosci Lett. 1992; 147: 159-162
        • Buisson A.
        • Margaill I.
        • Callebert J.
        • Plotkine M.
        • Boulu R.G.
        Mechanisms involved in the neuroprotective activity of a nitric oxide synthase inhibitor during focal cerebral ischemia.
        J Neurochem. 1993; 61: 690-696
        • Nishikawa T.
        • Kirsch J.R.
        • Koehler R.C.
        • Miyabe M.
        • Traystman R.J.
        Nitric oxide synthase inhibition reduces caudate injury following transient focal ischemia in cats.
        Stroke. 1994; 25: 877-885
        • Morikawa E.
        • Moskowitz M.A.
        • Huang Z.
        • Yoshida T.
        • Irikura K.
        • Dalkara T.
        l-Arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume.
        Stroke. 1994; 25: 429-435
        • Kulutz J.W.
        • Prado R.J.
        • Dietrich W.D.
        • Schleien C.L.
        • Watson B.D.
        The effect of nitric oxide synthase inhibition on infarct volume after reversible focal cerebral ischemia in conscious rats.
        Stroke. 1993; 24: 2023-2029
        • Weissman B.A.
        • Kadar T.
        • Brandeis R.
        • Shapira S.
        NG-nitro-l-arginine enhances neuronal death following transient forebrain ischemia in gerbils.
        Neurosci Lett. 1992; 146: 139-142
        • Hamada Y.
        • Hayakawa T.
        • Hattori H.
        • Mikawa H.
        Inhibitor of nitric oxide synthesis reduces hypoxic-ischemic brain damage in the neonatal rat.
        Pediatr Res. 1994; 35: 10-14
        • Knowles R.G.
        • Moncada S.
        Nitric oxide synthases in mammals.
        Biochem J. 1994; 298: 249-258
        • Nathan C.
        Nitric oxide as a secretory product of mammalian cells.
        FASEB J. 1992; 6: 3051-3064
        • Iadecola C.
        • Beitz A.J.
        • Renno W.
        • Xu X.
        • Mayer B.
        • Zhang F.
        Nitric oxide synthase-containing neural processes on large cerebral arteries and cerebral microvessels.
        Brain Res. 1993; 606: 148-155
        • Faraci F.M.
        • Brian J.E.
        Nitric oxide and the cerebral circulation.
        Stroke. 1994; 25: 692-703
        • Zhang Z.G.
        • Chopp M.
        • Gautam S.
        • et al.
        Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase-containing neurons after focal cerebral ischemia in rat.
        Brain Res. 1994; 654: 85-95
        • Huang Z.
        • Huang P.L.
        • Panahian H.
        • Dalkara T.
        • Fishman M.C.
        • Moskowitz M.A.
        Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase.
        Science. 1994; 265: 1883-1885
        • Rice J.E.
        • Vannuci R.C.
        • Brierly J.B.
        The influence of immaturity on hypoxic-ischemic brain damage in the rat.
        Ann Neurol. 1981; 9: 131-141
        • Schmidt H.H.H.W.
        • Pollock J.S.
        • Nakane M.
        • Gorsky L.D.
        • Förstermann U.
        • Murad F.
        Purification of soluble isoform of guanyl cyclase-activating-factor synthase.
        in: 3rd ed. Proc Natl Acad Sci USA. 88. 1991: 365-369
        • Hashikawa T.
        • Leggio M.G.
        • Hattori R.
        • Yui Y.
        Nitric oxide synthase immunoreactivity colocalized with NADPH-diaphorase histochemistry in monkey cerebral cortex.
        Brain Res. 1994; 641: 341-349
        • Yui Y.
        • Hattori R.
        • Kosuga K.
        • Eizawa H.
        • Hiki K.
        • Kawai C.
        Purification of nitric oxide synthase from rat macrophages.
        J Biol Chem. 1991; 266: 12544-12547
        • Sherwood N.M.
        • Timiras P.S.
        A Stereotaxic Atlas of the Developing Rat Brain.
        in: University of California Press, Berkeley1970: 15-75
        • Trifiletti R.R.
        Neuroprotective effects of NG-nitro-l-arginine in focal stroke in the 7-day old rat.
        Eur J Pharmacol. 1992; 218: 197-198
        • Dalkara T.
        • Yoshida T.
        • Irikura K.
        • Moskowitz M.A.
        Dual role of nitric oxide in focal cerebral ischemia.
        Neuropharmacology. 1994; 33: 1447-1452
        • Iadecola C.
        • Pelligrino D.A.
        • Moskowitz M.A.
        • Lassen N.A.
        Nitric oxide synthase inhibition and cerebrovascular regulation.
        J Cereb Blood Flow Metab. 1994; 14: 175-192
        • Volpe J.J.
        Hypoxic-ischemic encephalopathy: Biochemical and physiological aspects.
        in: Volpe J.J. Neurology of the Newborn. 3rd ed. Saunders, Philadelphia1994: 211-278
        • Yoshida T.
        • Limmroth V.
        • Irikura K.
        • Moskowitz M.A.
        The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels.
        J Cereb Blood Flow Metab. 1994; 14: 924-929
        • Regidor J.
        • Montesdeoca J.
        • Ramiretz-Gonzalez J.A.
        • Hernandez-Urquia C.M.
        • Divac I.
        Bilateral induction of NADPH-diaphorase activity in neocortical and hippocampal neurons by unilateral injury.
        Brain Res. 1993; 631: 171-174
        • Bredt D.S.
        • Glatt C.E.
        • Hwang P.M.
        • Fotuhi M.
        • Dawson T.M.
        • Snyder S.H.
        Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase.
        Neuron. 1991; 7: 615-624
        • Dawson T.M.
        • Bredt D.S.
        • Fotuhi M.
        • Hwang P.M.
        • Snyder S.H.
        Nitric oxide synthase and neuronal NADPH-diaphorase are identical in brain and peripheral tissue.
        in: 7th edn. Proc Natl Acad Sci USA. 88. 1991: 7797-7801
        • Ferriero D.M.
        • Arcavi L.J.
        • Sagar S.M.
        • McIntosh T.K.
        • Simon R.P.
        Selective sparing of NADPH-diaphorase neurons in neonatal hypoxia-ischemia.
        Ann Neurol. 1988; 24: 670-676
        • Ferrante R.J.
        • Kowall N.W.
        • Beal M.F.
        • Richardson E.P.
        • Bird E.D.
        • Martin J.B.
        Selective sparing of a class of striatal neurons in Huntington's disease.
        Science. 1985; 230: 561-563
        • Choi D.W.
        Glutamate neurotoxicity and diseases of the nervous system.
        Neuron. 1988; 1: 623-634
        • Lei S.Z.
        • Pan Z.H.
        • Aggarwal S.K.
        • et al.
        Effect on nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex.
        Neuron. 1992; 8: 1087-1099
        • Lipton S.A.
        • Choi Y.B.
        • Pan Z.H.
        • et al.
        A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.
        Nature. 1993; 364: 626-632